ddnet/src/game/client/gc_render_map.cpp
2008-03-12 23:53:39 +00:00

246 lines
6 KiB
C++

/* copyright (c) 2007 magnus auvinen, see licence.txt for more info */
#include <engine/e_client_interface.h>
#include "../g_math.h"
#include "gc_client.h"
void render_eval_envelope(ENVPOINT *points, int num_points, int channels, float time, float *result)
{
if(num_points == 0)
{
result[0] = 0;
result[1] = 0;
result[2] = 0;
result[3] = 0;
return;
}
if(num_points == 1)
{
result[0] = fx2f(points[0].values[0]);
result[1] = fx2f(points[0].values[1]);
result[2] = fx2f(points[0].values[2]);
result[3] = fx2f(points[0].values[3]);
return;
}
time = fmod(time, points[num_points-1].time/1000.0f)*1000.0f;
for(int i = 0; i < num_points-1; i++)
{
if(time >= points[i].time && time <= points[i+1].time)
{
float delta = points[i+1].time-points[i].time;
float a = (time-points[i].time)/delta;
if(points[i].curvetype == CURVETYPE_SMOOTH)
a = -2*a*a*a + 3*a*a; // second hermite basis
else if(points[i].curvetype == CURVETYPE_SLOW)
a = a*a*a;
else if(points[i].curvetype == CURVETYPE_FAST)
{
a = 1-a;
a = 1-a*a*a;
}
else if (points[i].curvetype == CURVETYPE_STEP)
a = 0;
else
{
// linear
}
for(int c = 0; c < channels; c++)
{
float v0 = fx2f(points[i].values[c]);
float v1 = fx2f(points[i+1].values[c]);
result[c] = v0 + (v1-v0) * a;
}
return;
}
}
result[0] = fx2f(points[num_points-1].values[0]);
result[1] = fx2f(points[num_points-1].values[1]);
result[2] = fx2f(points[num_points-1].values[2]);
result[3] = fx2f(points[num_points-1].values[3]);
return;
}
static void rotate(POINT *center, POINT *point, float rotation)
{
int x = point->x - center->x;
int y = point->y - center->y;
point->x = (int)(x * cosf(rotation) - y * sinf(rotation) + center->x);
point->y = (int)(x * sinf(rotation) + y * cosf(rotation) + center->y);
}
void render_quads(QUAD *quads, int num_quads, void (*eval)(float time_offset, int env, float *channels))
{
gfx_quads_begin();
float conv = 1/255.0f;
for(int i = 0; i < num_quads; i++)
{
QUAD *q = &quads[i];
gfx_quads_setsubset_free(
fx2f(q->texcoords[0].x), fx2f(q->texcoords[0].y),
fx2f(q->texcoords[1].x), fx2f(q->texcoords[1].y),
fx2f(q->texcoords[2].x), fx2f(q->texcoords[2].y),
fx2f(q->texcoords[3].x), fx2f(q->texcoords[3].y)
);
float r=1, g=1, b=1, a=1;
float offset_x = 0;
float offset_y = 0;
float rot = 0;
// TODO: fix this
if(q->pos_env >= 0)
{
float channels[4];
eval(q->pos_env_offset/1000.0f, q->pos_env, channels);
offset_x = channels[0];
offset_y = channels[1];
rot = channels[2]/360.0f*pi*2;
}
if(q->color_env >= 0)
{
float channels[4];
eval(q->color_env_offset/1000.0f, q->color_env, channels);
r = channels[0];
g = channels[1];
b = channels[2];
a = channels[3];
}
gfx_setcolorvertex(0, q->colors[0].r*conv*r, q->colors[0].g*conv*g, q->colors[0].b*conv*b, q->colors[0].a*conv*a);
gfx_setcolorvertex(1, q->colors[1].r*conv*r, q->colors[1].g*conv*g, q->colors[1].b*conv*b, q->colors[1].a*conv*a);
gfx_setcolorvertex(2, q->colors[2].r*conv*r, q->colors[2].g*conv*g, q->colors[2].b*conv*b, q->colors[2].a*conv*a);
gfx_setcolorvertex(3, q->colors[3].r*conv*r, q->colors[3].g*conv*g, q->colors[3].b*conv*b, q->colors[3].a*conv*a);
POINT *points = q->points;
if(rot != 0)
{
static POINT rotated[4];
rotated[0] = q->points[0];
rotated[1] = q->points[1];
rotated[2] = q->points[2];
rotated[3] = q->points[3];
points = rotated;
rotate(&q->points[4], &rotated[0], rot);
rotate(&q->points[4], &rotated[1], rot);
rotate(&q->points[4], &rotated[2], rot);
rotate(&q->points[4], &rotated[3], rot);
}
gfx_quads_draw_freeform(
fx2f(points[0].x)+offset_x, fx2f(points[0].y)+offset_y,
fx2f(points[1].x)+offset_x, fx2f(points[1].y)+offset_y,
fx2f(points[2].x)+offset_x, fx2f(points[2].y)+offset_y,
fx2f(points[3].x)+offset_x, fx2f(points[3].y)+offset_y
);
}
gfx_quads_end();
}
void render_tilemap(TILE *tiles, int w, int h, float scale, vec4 color, int flags)
{
//gfx_texture_set(img_get(tmap->image));
float screen_x0, screen_y0, screen_x1, screen_y1;
gfx_getscreen(&screen_x0, &screen_y0, &screen_x1, &screen_y1);
// calculate the final pixelsize for the tiles
float tile_pixelsize = 1024/32.0f;
float final_tilesize = scale/(screen_x1-screen_x0) * gfx_screenwidth();
float final_tilesize_scale = final_tilesize/tile_pixelsize;
gfx_quads_begin();
gfx_setcolor(color.r, color.g, color.b, color.a);
int starty = (int)(screen_y0/scale)-1;
int startx = (int)(screen_x0/scale)-1;
int endy = (int)(screen_y1/scale)+1;
int endx = (int)(screen_x1/scale)+1;
// adjust the texture shift according to mipmap level
float texsize = 1024.0f;
float frac = (1.25f/texsize) * (1/final_tilesize_scale);
float nudge = (0.5f/texsize) * (1/final_tilesize_scale);
for(int y = starty; y < endy; y++)
for(int x = startx; x < endx; x++)
{
int mx = x;
int my = y;
if(flags)
{
if(mx<0)
mx = 0;
if(mx>=w)
mx = w-1;
if(my<0)
my = 0;
if(my>=h)
my = h-1;
}
else
{
if(mx<0)
continue; // mx = 0;
if(mx>=w)
continue; // mx = w-1;
if(my<0)
continue; // my = 0;
if(my>=h)
continue; // my = h-1;
}
int c = mx + my*w;
unsigned char index = tiles[c].index;
if(index)
{
unsigned char flags = tiles[c].flags;
int tx = index%16;
int ty = index/16;
int px0 = tx*(1024/16);
int py0 = ty*(1024/16);
int px1 = (tx+1)*(1024/16)-1;
int py1 = (ty+1)*(1024/16)-1;
float u0 = nudge + px0/texsize+frac;
float v0 = nudge + py0/texsize+frac;
float u1 = nudge + px1/texsize-frac;
float v1 = nudge + py1/texsize-frac;
if(flags&TILEFLAG_VFLIP)
{
float tmp = u0;
u0 = u1;
u1 = tmp;
}
if(flags&TILEFLAG_HFLIP)
{
float tmp = v0;
v0 = v1;
v1 = tmp;
}
gfx_quads_setsubset(u0,v0,u1,v1);
gfx_quads_drawTL(x*scale, y*scale, scale, scale);
}
x += tiles[c].skip;
}
gfx_quads_end();
}