1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
use llvm_sys::core::{LLVMAddIncoming, LLVMCountIncoming, LLVMGetIncomingBlock, LLVMGetIncomingValue};
use llvm_sys::prelude::{LLVMBasicBlockRef, LLVMValueRef};
use std::convert::TryFrom;

use std::ffi::CStr;
use std::fmt::{self, Display};

use crate::basic_block::BasicBlock;
use crate::values::traits::AsValueRef;
use crate::values::{BasicValue, BasicValueEnum, InstructionOpcode, InstructionValue, Value};

use super::AnyValue;

// REVIEW: Metadata for phi values?
/// A Phi Instruction returns a value based on which basic block branched into
/// the Phi's containing basic block.
#[derive(Debug, PartialEq, Eq, Clone, Copy, Hash)]
pub struct PhiValue<'ctx> {
    phi_value: Value<'ctx>,
}

impl<'ctx> PhiValue<'ctx> {
    /// Get a value from an [LLVMValueRef].
    ///
    /// # Safety
    ///
    /// The ref must be valid and of type phi.
    pub unsafe fn new(value: LLVMValueRef) -> Self {
        assert!(!value.is_null());

        PhiValue {
            phi_value: Value::new(value),
        }
    }

    pub fn add_incoming(self, incoming: &[(&dyn BasicValue<'ctx>, BasicBlock<'ctx>)]) {
        let (mut values, mut basic_blocks): (Vec<LLVMValueRef>, Vec<LLVMBasicBlockRef>) = {
            incoming
                .iter()
                .map(|&(v, bb)| (v.as_value_ref(), bb.basic_block))
                .unzip()
        };

        unsafe {
            LLVMAddIncoming(
                self.as_value_ref(),
                values.as_mut_ptr(),
                basic_blocks.as_mut_ptr(),
                incoming.len() as u32,
            );
        }
    }

    pub fn count_incoming(self) -> u32 {
        unsafe { LLVMCountIncoming(self.as_value_ref()) }
    }

    pub fn get_incoming(self, index: u32) -> Option<(BasicValueEnum<'ctx>, BasicBlock<'ctx>)> {
        if index >= self.count_incoming() {
            return None;
        }

        let basic_block =
            unsafe { BasicBlock::new(LLVMGetIncomingBlock(self.as_value_ref(), index)).expect("Invalid BasicBlock") };
        let value = unsafe { BasicValueEnum::new(LLVMGetIncomingValue(self.as_value_ref(), index)) };

        Some((value, basic_block))
    }

    /// # Safety
    ///
    /// The index must be smaller [PhiValue::count_incoming].
    pub unsafe fn get_incoming_unchecked(self, index: u32) -> (BasicValueEnum<'ctx>, BasicBlock<'ctx>) {
        let basic_block =
            unsafe { BasicBlock::new(LLVMGetIncomingBlock(self.as_value_ref(), index)).expect("Invalid BasicBlock") };
        let value = unsafe { BasicValueEnum::new(LLVMGetIncomingValue(self.as_value_ref(), index)) };

        (value, basic_block)
    }

    /// Get an incoming edge iterator.
    pub fn get_incomings(self) -> IncomingIter<'ctx> {
        IncomingIter {
            pv: self,
            i: 0,
            count: self.count_incoming(),
        }
    }

    /// Gets the name of a `ArrayValue`. If the value is a constant, this will
    /// return an empty string.
    pub fn get_name(&self) -> &CStr {
        self.phi_value.get_name()
    }

    // I believe PhiValue is never a constant, so this should always work
    pub fn set_name(self, name: &str) {
        self.phi_value.set_name(name);
    }

    pub fn is_null(self) -> bool {
        self.phi_value.is_null()
    }

    pub fn is_undef(self) -> bool {
        self.phi_value.is_undef()
    }

    // SubType: -> InstructionValue<Phi>
    pub fn as_instruction(self) -> InstructionValue<'ctx> {
        self.phi_value
            .as_instruction()
            .expect("PhiValue should always be a Phi InstructionValue")
    }

    pub fn replace_all_uses_with(self, other: &PhiValue<'ctx>) {
        self.phi_value.replace_all_uses_with(other.as_value_ref())
    }

    pub fn as_basic_value(self) -> BasicValueEnum<'ctx> {
        unsafe { BasicValueEnum::new(self.as_value_ref()) }
    }
}

unsafe impl AsValueRef for PhiValue<'_> {
    fn as_value_ref(&self) -> LLVMValueRef {
        self.phi_value.value
    }
}

impl Display for PhiValue<'_> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(f, "{}", self.print_to_string())
    }
}

impl<'ctx> TryFrom<InstructionValue<'ctx>> for PhiValue<'ctx> {
    type Error = ();

    fn try_from(value: InstructionValue) -> Result<Self, Self::Error> {
        if value.get_opcode() == InstructionOpcode::Phi {
            unsafe { Ok(PhiValue::new(value.as_value_ref())) }
        } else {
            Err(())
        }
    }
}

/// Iterate over all the incoming edges of a phi value.
#[derive(Debug)]
pub struct IncomingIter<'ctx> {
    pv: PhiValue<'ctx>,
    i: u32,
    count: u32,
}

impl<'ctx> Iterator for IncomingIter<'ctx> {
    type Item = (BasicValueEnum<'ctx>, BasicBlock<'ctx>);

    fn next(&mut self) -> Option<Self::Item> {
        if self.i < self.count {
            let result = unsafe { self.pv.get_incoming_unchecked(self.i) };
            self.i += 1;
            Some(result)
        } else {
            None
        }
    }
}