1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891
use either::{
Either,
Either::{Left, Right},
};
use llvm_sys::core::{
LLVMGetAlignment, LLVMGetAllocatedType, LLVMGetFCmpPredicate, LLVMGetICmpPredicate, LLVMGetInstructionOpcode,
LLVMGetInstructionParent, LLVMGetMetadata, LLVMGetNextInstruction, LLVMGetNumOperands, LLVMGetOperand,
LLVMGetOperandUse, LLVMGetPreviousInstruction, LLVMGetVolatile, LLVMHasMetadata, LLVMInstructionClone,
LLVMInstructionEraseFromParent, LLVMInstructionRemoveFromParent, LLVMIsAAllocaInst, LLVMIsABasicBlock,
LLVMIsALoadInst, LLVMIsAStoreInst, LLVMIsATerminatorInst, LLVMIsConditional, LLVMIsTailCall, LLVMSetAlignment,
LLVMSetMetadata, LLVMSetOperand, LLVMSetVolatile, LLVMValueAsBasicBlock,
};
use llvm_sys::core::{LLVMGetOrdering, LLVMSetOrdering};
#[llvm_versions(10.0..=latest)]
use llvm_sys::core::{LLVMIsAAtomicCmpXchgInst, LLVMIsAAtomicRMWInst};
use llvm_sys::prelude::LLVMValueRef;
use llvm_sys::LLVMOpcode;
use std::{ffi::CStr, fmt, fmt::Display};
use crate::values::{BasicValue, BasicValueEnum, BasicValueUse, MetadataValue, Value};
use crate::{basic_block::BasicBlock, types::AnyTypeEnum};
use crate::{types::BasicTypeEnum, values::traits::AsValueRef};
use crate::{AtomicOrdering, FloatPredicate, IntPredicate};
use super::AnyValue;
// REVIEW: Split up into structs for SubTypes on InstructionValues?
// REVIEW: This should maybe be split up into InstructionOpcode and ConstOpcode?
// see LLVMGetConstOpcode
#[llvm_enum(LLVMOpcode)]
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub enum InstructionOpcode {
// Actual Instructions:
Add,
AddrSpaceCast,
Alloca,
And,
AShr,
AtomicCmpXchg,
AtomicRMW,
BitCast,
Br,
Call,
#[llvm_versions(9.0..=latest)]
CallBr,
CatchPad,
CatchRet,
CatchSwitch,
CleanupPad,
CleanupRet,
ExtractElement,
ExtractValue,
#[llvm_versions(8.0..=latest)]
FNeg,
FAdd,
FCmp,
FDiv,
Fence,
FMul,
FPExt,
FPToSI,
FPToUI,
FPTrunc,
#[llvm_versions(10.0..=latest)]
Freeze,
FRem,
FSub,
GetElementPtr,
ICmp,
IndirectBr,
InsertElement,
InsertValue,
IntToPtr,
Invoke,
LandingPad,
Load,
LShr,
Mul,
Or,
#[llvm_variant(LLVMPHI)]
Phi,
PtrToInt,
Resume,
#[llvm_variant(LLVMRet)]
Return,
SDiv,
Select,
SExt,
Shl,
ShuffleVector,
SIToFP,
SRem,
Store,
Sub,
Switch,
Trunc,
UDiv,
UIToFP,
Unreachable,
URem,
UserOp1,
UserOp2,
VAArg,
Xor,
ZExt,
}
#[derive(Debug, PartialEq, Eq, Copy, Hash)]
pub struct InstructionValue<'ctx> {
instruction_value: Value<'ctx>,
}
impl<'ctx> InstructionValue<'ctx> {
fn is_a_load_inst(self) -> bool {
!unsafe { LLVMIsALoadInst(self.as_value_ref()) }.is_null()
}
fn is_a_store_inst(self) -> bool {
!unsafe { LLVMIsAStoreInst(self.as_value_ref()) }.is_null()
}
fn is_a_alloca_inst(self) -> bool {
!unsafe { LLVMIsAAllocaInst(self.as_value_ref()) }.is_null()
}
#[llvm_versions(10.0..=latest)]
fn is_a_atomicrmw_inst(self) -> bool {
!unsafe { LLVMIsAAtomicRMWInst(self.as_value_ref()) }.is_null()
}
#[llvm_versions(10.0..=latest)]
fn is_a_cmpxchg_inst(self) -> bool {
!unsafe { LLVMIsAAtomicCmpXchgInst(self.as_value_ref()) }.is_null()
}
/// Get a value from an [LLVMValueRef].
///
/// # Safety
///
/// The ref must be valid and of type instruction.
pub unsafe fn new(instruction_value: LLVMValueRef) -> Self {
debug_assert!(!instruction_value.is_null());
let value = Value::new(instruction_value);
debug_assert!(value.is_instruction());
InstructionValue {
instruction_value: value,
}
}
/// Get name of the `InstructionValue`.
pub fn get_name(&self) -> Option<&CStr> {
if self.get_type().is_void_type() {
None
} else {
Some(self.instruction_value.get_name())
}
}
/// Get a instruction with it's name
/// Compares against all instructions after self, and self.
pub fn get_instruction_with_name(&self, name: &str) -> Option<InstructionValue<'ctx>> {
if let Some(ins_name) = self.get_name() {
if ins_name.to_str() == Ok(name) {
return Some(*self);
}
}
return self.get_next_instruction()?.get_instruction_with_name(name);
}
/// Set name of the `InstructionValue`.
pub fn set_name(&self, name: &str) -> Result<(), &'static str> {
if self.get_type().is_void_type() {
Err("Cannot set name of a void-type instruction!")
} else {
self.instruction_value.set_name(name);
Ok(())
}
}
/// Get type of the current InstructionValue
pub fn get_type(self) -> AnyTypeEnum<'ctx> {
unsafe { AnyTypeEnum::new(self.instruction_value.get_type()) }
}
pub fn get_opcode(self) -> InstructionOpcode {
let opcode = unsafe { LLVMGetInstructionOpcode(self.as_value_ref()) };
InstructionOpcode::new(opcode)
}
pub fn get_previous_instruction(self) -> Option<Self> {
let value = unsafe { LLVMGetPreviousInstruction(self.as_value_ref()) };
if value.is_null() {
return None;
}
unsafe { Some(InstructionValue::new(value)) }
}
pub fn get_next_instruction(self) -> Option<Self> {
let value = unsafe { LLVMGetNextInstruction(self.as_value_ref()) };
if value.is_null() {
return None;
}
unsafe { Some(InstructionValue::new(value)) }
}
// REVIEW: Potentially unsafe if parent BB or grandparent fn were removed?
pub fn erase_from_basic_block(self) {
unsafe { LLVMInstructionEraseFromParent(self.as_value_ref()) }
}
// REVIEW: Potentially unsafe if parent BB or grandparent fn were removed?
#[llvm_versions(4.0..=latest)]
pub fn remove_from_basic_block(self) {
unsafe { LLVMInstructionRemoveFromParent(self.as_value_ref()) }
}
// REVIEW: Potentially unsafe is parent BB or grandparent fn was deleted
// REVIEW: Should this *not* be an option? Parent should always exist,
// but I doubt LLVM returns null if the parent BB (or grandparent FN)
// was deleted... Invalid memory is more likely. Cloned IV will have no
// parent?
pub fn get_parent(self) -> Option<BasicBlock<'ctx>> {
unsafe { BasicBlock::new(LLVMGetInstructionParent(self.as_value_ref())) }
}
/// Returns if the instruction is a terminator
pub fn is_terminator(self) -> bool {
unsafe { !LLVMIsATerminatorInst(self.as_value_ref()).is_null() }
}
// SubTypes: Only apply to terminators
/// Returns if a terminator is conditional or not
pub fn is_conditional(self) -> bool {
if self.is_terminator() {
unsafe { LLVMIsConditional(self.as_value_ref()) == 1 }
} else {
false
}
}
pub fn is_tail_call(self) -> bool {
// LLVMIsTailCall has UB if the value is not an llvm::CallInst*.
if self.get_opcode() == InstructionOpcode::Call {
unsafe { LLVMIsTailCall(self.as_value_ref()) == 1 }
} else {
false
}
}
/// Returns the tail call kind on call instructions.
///
/// Other instructions return `None`.
#[llvm_versions(18.0..=latest)]
pub fn get_tail_call_kind(self) -> Option<super::LLVMTailCallKind> {
if self.get_opcode() == InstructionOpcode::Call {
unsafe { llvm_sys::core::LLVMGetTailCallKind(self.as_value_ref()) }.into()
} else {
None
}
}
/// Check whether this instructions supports [fast math flags][0].
///
/// [0]: https://llvm.org/docs/LangRef.html#fast-math-flags
#[llvm_versions(18.0..=latest)]
pub fn can_use_fast_math_flags(self) -> bool {
unsafe { llvm_sys::core::LLVMCanValueUseFastMathFlags(self.as_value_ref()) == 1 }
}
/// Get [fast math flags][0] of supported instructions.
///
/// Calling this on unsupported instructions is safe and returns `None`.
///
/// [0]: https://llvm.org/docs/LangRef.html#fast-math-flags
#[llvm_versions(18.0..=latest)]
pub fn get_fast_math_flags(self) -> Option<u32> {
self.can_use_fast_math_flags()
.then(|| unsafe { llvm_sys::core::LLVMGetFastMathFlags(self.as_value_ref()) } as u32)
}
/// Set [fast math flags][0] on supported instructions.
///
/// Calling this on unsupported instructions is safe and results in a no-op.
///
/// [0]: https://llvm.org/docs/LangRef.html#fast-math-flags
#[llvm_versions(18.0..=latest)]
pub fn set_fast_math_flags(self, flags: u32) {
if self.can_use_fast_math_flags() {
unsafe { llvm_sys::core::LLVMSetFastMathFlags(self.as_value_ref(), flags) };
}
}
/// Check if a `zext` instruction has the non-negative flag set.
///
/// Calling this function on other instructions is safe and returns `None`.
#[llvm_versions(18.0..=latest)]
pub fn get_non_negative_flag(self) -> Option<bool> {
(self.get_opcode() == InstructionOpcode::ZExt)
.then(|| unsafe { llvm_sys::core::LLVMGetNNeg(self.as_value_ref()) == 1 })
}
/// Set the non-negative flag on `zext` instructions.
///
/// Calling this function on other instructions is safe and results in a no-op.
#[llvm_versions(18.0..=latest)]
pub fn set_non_negative_flag(self, flag: bool) {
if self.get_opcode() == InstructionOpcode::ZExt {
unsafe { llvm_sys::core::LLVMSetNNeg(self.as_value_ref(), flag as i32) };
}
}
/// Checks if an `or` instruction has the `disjoint` flag set.
///
/// Calling this function on other instructions is safe and returns `None`.
#[llvm_versions(18.0..=latest)]
pub fn get_disjoint_flag(self) -> Option<bool> {
(self.get_opcode() == InstructionOpcode::Or)
.then(|| unsafe { llvm_sys::core::LLVMGetIsDisjoint(self.as_value_ref()) == 1 })
}
/// Set the `disjoint` flag on `or` instructions.
///
/// Calling this function on other instructions is safe and results in a no-op.
#[llvm_versions(18.0..=latest)]
pub fn set_disjoint_flag(self, flag: bool) {
if self.get_opcode() == InstructionOpcode::Or {
unsafe { llvm_sys::core::LLVMSetIsDisjoint(self.as_value_ref(), flag as i32) };
}
}
pub fn replace_all_uses_with(self, other: &InstructionValue<'ctx>) {
self.instruction_value.replace_all_uses_with(other.as_value_ref())
}
// SubTypes: Only apply to memory access instructions
/// Returns whether or not a memory access instruction is volatile.
#[llvm_versions(4.0..=9.0)]
pub fn get_volatile(self) -> Result<bool, &'static str> {
// Although cmpxchg and atomicrmw can have volatile, LLVM's C API
// does not export that functionality until 10.0.
if !self.is_a_load_inst() && !self.is_a_store_inst() {
return Err("Value is not a load or store.");
}
Ok(unsafe { LLVMGetVolatile(self.as_value_ref()) } == 1)
}
// SubTypes: Only apply to memory access instructions
/// Returns whether or not a memory access instruction is volatile.
#[llvm_versions(10.0..=latest)]
pub fn get_volatile(self) -> Result<bool, &'static str> {
if !self.is_a_load_inst() && !self.is_a_store_inst() && !self.is_a_atomicrmw_inst() && !self.is_a_cmpxchg_inst()
{
return Err("Value is not a load, store, atomicrmw or cmpxchg.");
}
Ok(unsafe { LLVMGetVolatile(self.as_value_ref()) } == 1)
}
// SubTypes: Only apply to memory access instructions
/// Sets whether or not a memory access instruction is volatile.
#[llvm_versions(4.0..=9.0)]
pub fn set_volatile(self, volatile: bool) -> Result<(), &'static str> {
// Although cmpxchg and atomicrmw can have volatile, LLVM's C API
// does not export that functionality until 10.0.
if !self.is_a_load_inst() && !self.is_a_store_inst() {
return Err("Value is not a load or store.");
}
Ok(unsafe { LLVMSetVolatile(self.as_value_ref(), volatile as i32) })
}
// SubTypes: Only apply to memory access instructions
/// Sets whether or not a memory access instruction is volatile.
#[llvm_versions(10.0..=latest)]
pub fn set_volatile(self, volatile: bool) -> Result<(), &'static str> {
if !self.is_a_load_inst() && !self.is_a_store_inst() && !self.is_a_atomicrmw_inst() && !self.is_a_cmpxchg_inst()
{
return Err("Value is not a load, store, atomicrmw or cmpxchg.");
}
unsafe { LLVMSetVolatile(self.as_value_ref(), volatile as i32) };
Ok(())
}
// SubTypes: Only apply to alloca instruction
/// Returns the type that is allocated by the alloca instruction.
pub fn get_allocated_type(self) -> Result<BasicTypeEnum<'ctx>, &'static str> {
if !self.is_a_alloca_inst() {
return Err("Value is not an alloca.");
}
Ok(unsafe { BasicTypeEnum::new(LLVMGetAllocatedType(self.as_value_ref())) })
}
// SubTypes: Only apply to memory access and alloca instructions
/// Returns alignment on a memory access instruction or alloca.
pub fn get_alignment(self) -> Result<u32, &'static str> {
if !self.is_a_alloca_inst() && !self.is_a_load_inst() && !self.is_a_store_inst() {
return Err("Value is not an alloca, load or store.");
}
Ok(unsafe { LLVMGetAlignment(self.as_value_ref()) })
}
// SubTypes: Only apply to memory access and alloca instructions
/// Sets alignment on a memory access instruction or alloca.
pub fn set_alignment(self, alignment: u32) -> Result<(), &'static str> {
#[cfg(any(feature = "llvm11-0", feature = "llvm12-0"))]
{
if alignment == 0 {
return Err("Alignment cannot be 0");
}
}
//The alignment = 0 check above covers LLVM >= 11, the != 0 check here keeps older versions compatible
if !alignment.is_power_of_two() && alignment != 0 {
return Err("Alignment is not a power of 2!");
}
if !self.is_a_alloca_inst() && !self.is_a_load_inst() && !self.is_a_store_inst() {
return Err("Value is not an alloca, load or store.");
}
unsafe { LLVMSetAlignment(self.as_value_ref(), alignment) };
Ok(())
}
// SubTypes: Only apply to memory access instructions
/// Returns atomic ordering on a memory access instruction.
pub fn get_atomic_ordering(self) -> Result<AtomicOrdering, &'static str> {
if !self.is_a_load_inst() && !self.is_a_store_inst() {
return Err("Value is not a load or store.");
}
Ok(unsafe { LLVMGetOrdering(self.as_value_ref()) }.into())
}
// SubTypes: Only apply to memory access instructions
/// Sets atomic ordering on a memory access instruction.
pub fn set_atomic_ordering(self, ordering: AtomicOrdering) -> Result<(), &'static str> {
// Although fence and atomicrmw both have an ordering, the LLVM C API
// does not support them. The cmpxchg instruction has two orderings and
// does not work with this API.
if !self.is_a_load_inst() && !self.is_a_store_inst() {
return Err("Value is not a load or store instruction.");
}
match ordering {
AtomicOrdering::Release if self.is_a_load_inst() => {
return Err("The release ordering is not valid on load instructions.")
},
AtomicOrdering::AcquireRelease => {
return Err("The acq_rel ordering is not valid on load or store instructions.")
},
AtomicOrdering::Acquire if self.is_a_store_inst() => {
return Err("The acquire ordering is not valid on store instructions.")
},
_ => {},
};
unsafe { LLVMSetOrdering(self.as_value_ref(), ordering.into()) };
Ok(())
}
/// Obtains the number of operands an `InstructionValue` has.
/// An operand is a `BasicValue` used in an IR instruction.
///
/// The following example,
///
/// ```no_run
/// use inkwell::AddressSpace;
/// use inkwell::context::Context;
///
/// let context = Context::create();
/// let module = context.create_module("ivs");
/// let builder = context.create_builder();
/// let void_type = context.void_type();
/// let f32_type = context.f32_type();
/// let f32_ptr_type = f32_type.ptr_type(AddressSpace::default());
/// let fn_type = void_type.fn_type(&[f32_ptr_type.into()], false);
///
/// let function = module.add_function("take_f32_ptr", fn_type, None);
/// let basic_block = context.append_basic_block(function, "entry");
///
/// builder.position_at_end(basic_block);
///
/// let arg1 = function.get_first_param().unwrap().into_pointer_value();
/// let f32_val = f32_type.const_float(::std::f64::consts::PI);
/// let store_instruction = builder.build_store(arg1, f32_val).unwrap();
/// let free_instruction = builder.build_free(arg1).unwrap();
/// let return_instruction = builder.build_return(None).unwrap();
///
/// assert_eq!(store_instruction.get_num_operands(), 2);
/// assert_eq!(free_instruction.get_num_operands(), 2);
/// assert_eq!(return_instruction.get_num_operands(), 0);
/// ```
///
/// will generate LLVM IR roughly like (varying slightly across LLVM versions):
///
/// ```ir
/// ; ModuleID = 'ivs'
/// source_filename = "ivs"
///
/// define void @take_f32_ptr(float* %0) {
/// entry:
/// store float 0x400921FB60000000, float* %0
/// %1 = bitcast float* %0 to i8*
/// tail call void @free(i8* %1)
/// ret void
/// }
///
/// declare void @free(i8*)
/// ```
///
/// which makes the number of instruction operands clear:
/// 1) Store has two: a const float and a variable float pointer %0
/// 2) Bitcast has one: a variable float pointer %0
/// 3) Function call has two: i8 pointer %1 argument, and the free function itself
/// 4) Void return has zero: void is not a value and does not count as an operand
/// even though the return instruction can take values.
pub fn get_num_operands(self) -> u32 {
unsafe { LLVMGetNumOperands(self.as_value_ref()) as u32 }
}
/// Obtains the operand an `InstructionValue` has at a given index if any.
/// An operand is a `BasicValue` used in an IR instruction.
///
/// The following example,
///
/// ```no_run
/// use inkwell::AddressSpace;
/// use inkwell::context::Context;
///
/// let context = Context::create();
/// let module = context.create_module("ivs");
/// let builder = context.create_builder();
/// let void_type = context.void_type();
/// let f32_type = context.f32_type();
/// let f32_ptr_type = f32_type.ptr_type(AddressSpace::default());
/// let fn_type = void_type.fn_type(&[f32_ptr_type.into()], false);
///
/// let function = module.add_function("take_f32_ptr", fn_type, None);
/// let basic_block = context.append_basic_block(function, "entry");
///
/// builder.position_at_end(basic_block);
///
/// let arg1 = function.get_first_param().unwrap().into_pointer_value();
/// let f32_val = f32_type.const_float(::std::f64::consts::PI);
/// let store_instruction = builder.build_store(arg1, f32_val).unwrap();
/// let free_instruction = builder.build_free(arg1).unwrap();
/// let return_instruction = builder.build_return(None).unwrap();
///
/// assert!(store_instruction.get_operand(0).is_some());
/// assert!(store_instruction.get_operand(1).is_some());
/// assert!(store_instruction.get_operand(2).is_none());
/// assert!(free_instruction.get_operand(0).is_some());
/// assert!(free_instruction.get_operand(1).is_some());
/// assert!(free_instruction.get_operand(2).is_none());
/// assert!(return_instruction.get_operand(0).is_none());
/// assert!(return_instruction.get_operand(1).is_none());
/// ```
///
/// will generate LLVM IR roughly like (varying slightly across LLVM versions):
///
/// ```ir
/// ; ModuleID = 'ivs'
/// source_filename = "ivs"
///
/// define void @take_f32_ptr(float* %0) {
/// entry:
/// store float 0x400921FB60000000, float* %0
/// %1 = bitcast float* %0 to i8*
/// tail call void @free(i8* %1)
/// ret void
/// }
///
/// declare void @free(i8*)
/// ```
///
/// which makes the instruction operands clear:
/// 1) Store has two: a const float and a variable float pointer %0
/// 2) Bitcast has one: a variable float pointer %0
/// 3) Function call has two: i8 pointer %1 argument, and the free function itself
/// 4) Void return has zero: void is not a value and does not count as an operand
/// even though the return instruction can take values.
pub fn get_operand(self, index: u32) -> Option<Either<BasicValueEnum<'ctx>, BasicBlock<'ctx>>> {
let num_operands = self.get_num_operands();
if index >= num_operands {
return None;
}
unsafe { self.get_operand_unchecked(index) }
}
/// Get the operand of an `InstructionValue`.
///
/// # Safety
///
/// The index must be less than [InstructionValue::get_num_operands].
pub unsafe fn get_operand_unchecked(self, index: u32) -> Option<Either<BasicValueEnum<'ctx>, BasicBlock<'ctx>>> {
let operand = unsafe { LLVMGetOperand(self.as_value_ref(), index) };
if operand.is_null() {
return None;
}
let is_basic_block = unsafe { !LLVMIsABasicBlock(operand).is_null() };
if is_basic_block {
let bb = unsafe { BasicBlock::new(LLVMValueAsBasicBlock(operand)) };
Some(Right(bb.expect("BasicBlock should always be valid")))
} else {
Some(Left(unsafe { BasicValueEnum::new(operand) }))
}
}
/// Get an instruction value operand iterator.
pub fn get_operands(self) -> OperandIter<'ctx> {
OperandIter {
iv: self,
i: 0,
count: self.get_num_operands(),
}
}
/// Sets the operand an `InstructionValue` has at a given index if possible.
/// An operand is a `BasicValue` used in an IR instruction.
///
/// ```no_run
/// use inkwell::AddressSpace;
/// use inkwell::context::Context;
///
/// let context = Context::create();
/// let module = context.create_module("ivs");
/// let builder = context.create_builder();
/// let void_type = context.void_type();
/// let f32_type = context.f32_type();
/// let f32_ptr_type = f32_type.ptr_type(AddressSpace::default());
/// let fn_type = void_type.fn_type(&[f32_ptr_type.into()], false);
///
/// let function = module.add_function("take_f32_ptr", fn_type, None);
/// let basic_block = context.append_basic_block(function, "entry");
///
/// builder.position_at_end(basic_block);
///
/// let arg1 = function.get_first_param().unwrap().into_pointer_value();
/// let f32_val = f32_type.const_float(::std::f64::consts::PI);
/// let store_instruction = builder.build_store(arg1, f32_val).unwrap();
/// let free_instruction = builder.build_free(arg1).unwrap();
/// let return_instruction = builder.build_return(None).unwrap();
///
/// // This will produce invalid IR:
/// free_instruction.set_operand(0, f32_val);
///
/// assert_eq!(free_instruction.get_operand(0).unwrap().left().unwrap(), f32_val);
/// ```
pub fn set_operand<BV: BasicValue<'ctx>>(self, index: u32, val: BV) -> bool {
let num_operands = self.get_num_operands();
if index >= num_operands {
return false;
}
unsafe { LLVMSetOperand(self.as_value_ref(), index, val.as_value_ref()) }
true
}
/// Gets the use of an operand(`BasicValue`), if any.
///
/// ```no_run
/// use inkwell::AddressSpace;
/// use inkwell::context::Context;
/// use inkwell::values::BasicValue;
///
/// let context = Context::create();
/// let module = context.create_module("ivs");
/// let builder = context.create_builder();
/// let void_type = context.void_type();
/// let f32_type = context.f32_type();
/// let f32_ptr_type = f32_type.ptr_type(AddressSpace::default());
/// let fn_type = void_type.fn_type(&[f32_ptr_type.into()], false);
///
/// let function = module.add_function("take_f32_ptr", fn_type, None);
/// let basic_block = context.append_basic_block(function, "entry");
///
/// builder.position_at_end(basic_block);
///
/// let arg1 = function.get_first_param().unwrap().into_pointer_value();
/// let f32_val = f32_type.const_float(::std::f64::consts::PI);
/// let store_instruction = builder.build_store(arg1, f32_val).unwrap();
/// let free_instruction = builder.build_free(arg1).unwrap();
/// let return_instruction = builder.build_return(None).unwrap();
///
/// assert_eq!(store_instruction.get_operand_use(1), arg1.get_first_use());
/// ```
pub fn get_operand_use(self, index: u32) -> Option<BasicValueUse<'ctx>> {
let num_operands = self.get_num_operands();
if index >= num_operands {
return None;
}
unsafe { self.get_operand_use_unchecked(index) }
}
/// Gets the use of an operand(`BasicValue`), if any.
///
/// # Safety
///
/// The index must be smaller than [InstructionValue::get_num_operands].
pub unsafe fn get_operand_use_unchecked(self, index: u32) -> Option<BasicValueUse<'ctx>> {
let use_ = unsafe { LLVMGetOperandUse(self.as_value_ref(), index) };
if use_.is_null() {
return None;
}
unsafe { Some(BasicValueUse::new(use_)) }
}
/// Get an instruction value operand use iterator.
pub fn get_operand_uses(self) -> OperandUseIter<'ctx> {
OperandUseIter {
iv: self,
i: 0,
count: self.get_num_operands(),
}
}
/// Gets the first use of an `InstructionValue` if any.
///
/// The following example,
///
/// ```no_run
/// use inkwell::AddressSpace;
/// use inkwell::context::Context;
/// use inkwell::values::BasicValue;
///
/// let context = Context::create();
/// let module = context.create_module("ivs");
/// let builder = context.create_builder();
/// let void_type = context.void_type();
/// let f32_type = context.f32_type();
/// let f32_ptr_type = f32_type.ptr_type(AddressSpace::default());
/// let fn_type = void_type.fn_type(&[f32_ptr_type.into()], false);
///
/// let function = module.add_function("take_f32_ptr", fn_type, None);
/// let basic_block = context.append_basic_block(function, "entry");
///
/// builder.position_at_end(basic_block);
///
/// let arg1 = function.get_first_param().unwrap().into_pointer_value();
/// let f32_val = f32_type.const_float(::std::f64::consts::PI);
/// let store_instruction = builder.build_store(arg1, f32_val).unwrap();
/// let free_instruction = builder.build_free(arg1).unwrap();
/// let return_instruction = builder.build_return(None).unwrap();
///
/// assert!(arg1.get_first_use().is_some());
/// ```
pub fn get_first_use(self) -> Option<BasicValueUse<'ctx>> {
self.instruction_value.get_first_use()
}
/// Gets the predicate of an `ICmp` `InstructionValue`.
/// For instance, in the LLVM instruction
/// `%3 = icmp slt i32 %0, %1`
/// this gives the `slt`.
///
/// If the instruction is not an `ICmp`, this returns None.
pub fn get_icmp_predicate(self) -> Option<IntPredicate> {
// REVIEW: this call to get_opcode() can be inefficient;
// what happens if we don't perform this check, and just call
// LLVMGetICmpPredicate() regardless?
if self.get_opcode() == InstructionOpcode::ICmp {
let pred = unsafe { LLVMGetICmpPredicate(self.as_value_ref()) };
Some(IntPredicate::new(pred))
} else {
None
}
}
/// Gets the predicate of an `FCmp` `InstructionValue`.
/// For instance, in the LLVM instruction
/// `%3 = fcmp olt float %0, %1`
/// this gives the `olt`.
///
/// If the instruction is not an `FCmp`, this returns None.
pub fn get_fcmp_predicate(self) -> Option<FloatPredicate> {
// REVIEW: this call to get_opcode() can be inefficient;
// what happens if we don't perform this check, and just call
// LLVMGetFCmpPredicate() regardless?
if self.get_opcode() == InstructionOpcode::FCmp {
let pred = unsafe { LLVMGetFCmpPredicate(self.as_value_ref()) };
Some(FloatPredicate::new(pred))
} else {
None
}
}
/// Determines whether or not this `Instruction` has any associated metadata.
pub fn has_metadata(self) -> bool {
unsafe { LLVMHasMetadata(self.instruction_value.value) == 1 }
}
/// Gets the `MetadataValue` associated with this `Instruction` at a specific
/// `kind_id`.
pub fn get_metadata(self, kind_id: u32) -> Option<MetadataValue<'ctx>> {
let metadata_value = unsafe { LLVMGetMetadata(self.instruction_value.value, kind_id) };
if metadata_value.is_null() {
return None;
}
unsafe { Some(MetadataValue::new(metadata_value)) }
}
/// Determines whether or not this `Instruction` has any associated metadata
/// `kind_id`.
pub fn set_metadata(self, metadata: MetadataValue<'ctx>, kind_id: u32) -> Result<(), &'static str> {
if !metadata.is_node() {
return Err("metadata is expected to be a node.");
}
unsafe {
LLVMSetMetadata(self.instruction_value.value, kind_id, metadata.as_value_ref());
}
Ok(())
}
}
impl Clone for InstructionValue<'_> {
/// Creates a clone of this `InstructionValue`, and returns it.
/// The clone will have no parent, and no name.
fn clone(&self) -> Self {
unsafe { InstructionValue::new(LLVMInstructionClone(self.as_value_ref())) }
}
}
unsafe impl AsValueRef for InstructionValue<'_> {
fn as_value_ref(&self) -> LLVMValueRef {
self.instruction_value.value
}
}
impl Display for InstructionValue<'_> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "{}", self.print_to_string())
}
}
/// Iterate over all the operands of an instruction value.
#[derive(Debug)]
pub struct OperandIter<'ctx> {
iv: InstructionValue<'ctx>,
i: u32,
count: u32,
}
impl<'ctx> Iterator for OperandIter<'ctx> {
type Item = Option<Either<BasicValueEnum<'ctx>, BasicBlock<'ctx>>>;
fn next(&mut self) -> Option<Self::Item> {
if self.i < self.count {
let result = unsafe { self.iv.get_operand_unchecked(self.i) };
self.i += 1;
Some(result)
} else {
None
}
}
}
/// Iterate over all the operands of an instruction value.
#[derive(Debug)]
pub struct OperandUseIter<'ctx> {
iv: InstructionValue<'ctx>,
i: u32,
count: u32,
}
impl<'ctx> Iterator for OperandUseIter<'ctx> {
type Item = Option<BasicValueUse<'ctx>>;
fn next(&mut self) -> Option<Self::Item> {
if self.i < self.count {
let result = unsafe { self.iv.get_operand_use_unchecked(self.i) };
self.i += 1;
Some(result)
} else {
None
}
}
}