1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
#[llvm_versions(4.0..=16.0)]
use llvm_sys::core::LLVMGetGlobalPassRegistry;
use llvm_sys::core::{
    LLVMCreateFunctionPassManagerForModule, LLVMCreatePassManager, LLVMDisposePassManager,
    LLVMFinalizeFunctionPassManager, LLVMInitializeFunctionPassManager, LLVMRunFunctionPassManager, LLVMRunPassManager,
};
#[llvm_versions(4.0..=16.0)]
use llvm_sys::initialization::{
    LLVMInitializeAnalysis, LLVMInitializeCodeGen, LLVMInitializeCore, LLVMInitializeIPA, LLVMInitializeIPO,
    LLVMInitializeInstCombine, LLVMInitializeScalarOpts, LLVMInitializeTarget, LLVMInitializeTransformUtils,
    LLVMInitializeVectorization,
};
#[llvm_versions(4.0..=15.0)]
use llvm_sys::initialization::{LLVMInitializeInstrumentation, LLVMInitializeObjCARCOpts};
use llvm_sys::prelude::LLVMPassManagerRef;
#[llvm_versions(4.0..=16.0)]
use llvm_sys::prelude::LLVMPassRegistryRef;
#[llvm_versions(10.0..=16.0)]
use llvm_sys::transforms::ipo::LLVMAddMergeFunctionsPass;
#[llvm_versions(4.0..=15.0)]
use llvm_sys::transforms::ipo::LLVMAddPruneEHPass;
#[llvm_versions(4.0..=16.0)]
use llvm_sys::transforms::ipo::{
    LLVMAddAlwaysInlinerPass, LLVMAddConstantMergePass, LLVMAddDeadArgEliminationPass, LLVMAddFunctionAttrsPass,
    LLVMAddFunctionInliningPass, LLVMAddGlobalDCEPass, LLVMAddGlobalOptimizerPass, LLVMAddIPSCCPPass,
    LLVMAddInternalizePass, LLVMAddStripDeadPrototypesPass, LLVMAddStripSymbolsPass,
};
#[llvm_versions(4.0..=16.0)]
use llvm_sys::transforms::pass_manager_builder::{
    LLVMPassManagerBuilderCreate, LLVMPassManagerBuilderDispose, LLVMPassManagerBuilderPopulateFunctionPassManager,
    LLVMPassManagerBuilderPopulateModulePassManager, LLVMPassManagerBuilderRef,
    LLVMPassManagerBuilderSetDisableSimplifyLibCalls, LLVMPassManagerBuilderSetDisableUnitAtATime,
    LLVMPassManagerBuilderSetDisableUnrollLoops, LLVMPassManagerBuilderSetOptLevel, LLVMPassManagerBuilderSetSizeLevel,
    LLVMPassManagerBuilderUseInlinerWithThreshold,
};
#[llvm_versions(4.0..=16.0)]
use llvm_sys::transforms::scalar::{
    LLVMAddAggressiveDCEPass, LLVMAddAlignmentFromAssumptionsPass, LLVMAddBasicAliasAnalysisPass,
    LLVMAddBitTrackingDCEPass, LLVMAddCFGSimplificationPass, LLVMAddCorrelatedValuePropagationPass,
    LLVMAddDeadStoreEliminationPass, LLVMAddDemoteMemoryToRegisterPass, LLVMAddEarlyCSEPass, LLVMAddGVNPass,
    LLVMAddIndVarSimplifyPass, LLVMAddInstructionCombiningPass, LLVMAddJumpThreadingPass, LLVMAddLICMPass,
    LLVMAddLoopDeletionPass, LLVMAddLoopIdiomPass, LLVMAddLoopRerollPass, LLVMAddLoopRotatePass, LLVMAddLoopUnrollPass,
    LLVMAddLowerExpectIntrinsicPass, LLVMAddMemCpyOptPass, LLVMAddMergedLoadStoreMotionPass,
    LLVMAddPartiallyInlineLibCallsPass, LLVMAddReassociatePass, LLVMAddSCCPPass, LLVMAddScalarReplAggregatesPass,
    LLVMAddScalarReplAggregatesPassSSA, LLVMAddScalarReplAggregatesPassWithThreshold, LLVMAddScalarizerPass,
    LLVMAddScopedNoAliasAAPass, LLVMAddSimplifyLibCallsPass, LLVMAddTailCallEliminationPass,
    LLVMAddTypeBasedAliasAnalysisPass, LLVMAddVerifierPass,
};
#[llvm_versions(4.0..=16.0)]
use llvm_sys::transforms::vectorize::{LLVMAddLoopVectorizePass, LLVMAddSLPVectorizePass};

// LLVM12 removes the ConstantPropagation pass
// Users should use the InstSimplify pass instead.
#[llvm_versions(4.0..=11.0)]
use llvm_sys::transforms::ipo::LLVMAddIPConstantPropagationPass;
#[llvm_versions(4.0..=11.0)]
use llvm_sys::transforms::scalar::LLVMAddConstantPropagationPass;

#[llvm_versions(13.0..=latest)]
use llvm_sys::transforms::pass_builder::{
    LLVMCreatePassBuilderOptions, LLVMDisposePassBuilderOptions, LLVMPassBuilderOptionsRef,
    LLVMPassBuilderOptionsSetCallGraphProfile, LLVMPassBuilderOptionsSetDebugLogging,
    LLVMPassBuilderOptionsSetForgetAllSCEVInLoopUnroll, LLVMPassBuilderOptionsSetLicmMssaNoAccForPromotionCap,
    LLVMPassBuilderOptionsSetLicmMssaOptCap, LLVMPassBuilderOptionsSetLoopInterleaving,
    LLVMPassBuilderOptionsSetLoopUnrolling, LLVMPassBuilderOptionsSetLoopVectorization,
    LLVMPassBuilderOptionsSetMergeFunctions, LLVMPassBuilderOptionsSetSLPVectorization,
    LLVMPassBuilderOptionsSetVerifyEach,
};
#[llvm_versions(12.0..=16.0)]
use llvm_sys::transforms::scalar::LLVMAddInstructionSimplifyPass;

use crate::module::Module;
use crate::values::{AsValueRef, FunctionValue};
#[llvm_versions(4.0..=16.0)]
use crate::OptimizationLevel;

use std::borrow::Borrow;
use std::marker::PhantomData;

// REVIEW: Opt Level might be identical to targets::Option<CodeGenOptLevel>
#[llvm_versions(4.0..=16.0)]
#[derive(Debug)]
pub struct PassManagerBuilder {
    pass_manager_builder: LLVMPassManagerBuilderRef,
}

#[llvm_versions(4.0..=16.0)]
impl PassManagerBuilder {
    pub unsafe fn new(pass_manager_builder: LLVMPassManagerBuilderRef) -> Self {
        assert!(!pass_manager_builder.is_null());

        PassManagerBuilder { pass_manager_builder }
    }

    /// Acquires the underlying raw pointer belonging to this `PassManagerBuilder` type.
    pub fn as_mut_ptr(&self) -> LLVMPassManagerBuilderRef {
        self.pass_manager_builder
    }

    pub fn create() -> Self {
        let pass_manager_builder = unsafe { LLVMPassManagerBuilderCreate() };

        unsafe { PassManagerBuilder::new(pass_manager_builder) }
    }

    pub fn set_optimization_level(&self, opt_level: OptimizationLevel) {
        unsafe { LLVMPassManagerBuilderSetOptLevel(self.pass_manager_builder, opt_level as u32) }
    }

    // REVIEW: Valid input 0-2 according to llvmlite. Maybe better as an enum?
    pub fn set_size_level(&self, size_level: u32) {
        unsafe { LLVMPassManagerBuilderSetSizeLevel(self.pass_manager_builder, size_level) }
    }

    pub fn set_disable_unit_at_a_time(&self, disable: bool) {
        unsafe { LLVMPassManagerBuilderSetDisableUnitAtATime(self.pass_manager_builder, disable as i32) }
    }

    pub fn set_disable_unroll_loops(&self, disable: bool) {
        unsafe { LLVMPassManagerBuilderSetDisableUnrollLoops(self.pass_manager_builder, disable as i32) }
    }

    pub fn set_disable_simplify_lib_calls(&self, disable: bool) {
        unsafe { LLVMPassManagerBuilderSetDisableSimplifyLibCalls(self.pass_manager_builder, disable as i32) }
    }

    pub fn set_inliner_with_threshold(&self, threshold: u32) {
        unsafe { LLVMPassManagerBuilderUseInlinerWithThreshold(self.pass_manager_builder, threshold) }
    }

    /// Populates a PassManager<FunctionValue> with the expectation of function
    /// transformations.
    ///
    /// # Example
    ///
    /// ```no_run
    /// use inkwell::context::Context;
    /// use inkwell::OptimizationLevel::Aggressive;
    /// use inkwell::passes::{PassManager, PassManagerBuilder};
    ///
    /// let context = Context::create();
    /// let module = context.create_module("mod");
    /// let pass_manager_builder = PassManagerBuilder::create();
    ///
    /// pass_manager_builder.set_optimization_level(Aggressive);
    ///
    /// let fpm = PassManager::create(&module);
    ///
    /// pass_manager_builder.populate_function_pass_manager(&fpm);
    /// ```
    pub fn populate_function_pass_manager(&self, pass_manager: &PassManager<FunctionValue>) {
        unsafe {
            LLVMPassManagerBuilderPopulateFunctionPassManager(self.pass_manager_builder, pass_manager.pass_manager)
        }
    }

    /// Populates a PassManager<Module> with the expectation of whole module
    /// transformations.
    ///
    /// # Example
    ///
    /// ```no_run
    /// use inkwell::OptimizationLevel::Aggressive;
    /// use inkwell::passes::{PassManager, PassManagerBuilder};
    /// use inkwell::targets::{InitializationConfig, Target};
    ///
    /// let config = InitializationConfig::default();
    /// Target::initialize_native(&config).unwrap();
    /// let pass_manager_builder = PassManagerBuilder::create();
    ///
    /// pass_manager_builder.set_optimization_level(Aggressive);
    ///
    /// let fpm = PassManager::create(());
    ///
    /// pass_manager_builder.populate_module_pass_manager(&fpm);
    /// ```
    pub fn populate_module_pass_manager(&self, pass_manager: &PassManager<Module>) {
        unsafe { LLVMPassManagerBuilderPopulateModulePassManager(self.pass_manager_builder, pass_manager.pass_manager) }
    }

    /// Populates a PassManager<Module> with the expectation of link time
    /// optimization transformations.
    ///
    /// # Example
    ///
    /// ```no_run
    /// use inkwell::OptimizationLevel::Aggressive;
    /// use inkwell::passes::{PassManager, PassManagerBuilder};
    /// use inkwell::targets::{InitializationConfig, Target};
    ///
    /// let config = InitializationConfig::default();
    /// Target::initialize_native(&config).unwrap();
    /// let pass_manager_builder = PassManagerBuilder::create();
    ///
    /// pass_manager_builder.set_optimization_level(Aggressive);
    ///
    /// let lpm = PassManager::create(());
    ///
    /// pass_manager_builder.populate_lto_pass_manager(&lpm, false, false);
    /// ```
    #[llvm_versions(4.0..=14.0)]
    pub fn populate_lto_pass_manager(&self, pass_manager: &PassManager<Module>, internalize: bool, run_inliner: bool) {
        use llvm_sys::transforms::pass_manager_builder::LLVMPassManagerBuilderPopulateLTOPassManager;

        unsafe {
            LLVMPassManagerBuilderPopulateLTOPassManager(
                self.pass_manager_builder,
                pass_manager.pass_manager,
                internalize as i32,
                run_inliner as i32,
            )
        }
    }
}

#[llvm_versions(4.0..=16.0)]
impl Drop for PassManagerBuilder {
    fn drop(&mut self) {
        unsafe { LLVMPassManagerBuilderDispose(self.pass_manager_builder) }
    }
}

// This is an ugly privacy hack so that PassManagerSubType can stay private
// to this module and so that super traits using this trait will be not be
// implementable outside this library
pub trait PassManagerSubType {
    type Input;

    unsafe fn create<I: Borrow<Self::Input>>(input: I) -> LLVMPassManagerRef;
    unsafe fn run_in_pass_manager(&self, pass_manager: &PassManager<Self>) -> bool
    where
        Self: Sized;
}

impl PassManagerSubType for Module<'_> {
    type Input = ();

    unsafe fn create<I: Borrow<Self::Input>>(_: I) -> LLVMPassManagerRef {
        LLVMCreatePassManager()
    }

    unsafe fn run_in_pass_manager(&self, pass_manager: &PassManager<Self>) -> bool {
        LLVMRunPassManager(pass_manager.pass_manager, self.module.get()) == 1
    }
}

// With GATs https://github.com/rust-lang/rust/issues/44265 this could be
// type Input<'a> = &'a Module;
impl<'ctx> PassManagerSubType for FunctionValue<'ctx> {
    type Input = Module<'ctx>;

    unsafe fn create<I: Borrow<Self::Input>>(input: I) -> LLVMPassManagerRef {
        LLVMCreateFunctionPassManagerForModule(input.borrow().module.get())
    }

    unsafe fn run_in_pass_manager(&self, pass_manager: &PassManager<Self>) -> bool {
        LLVMRunFunctionPassManager(pass_manager.pass_manager, self.as_value_ref()) == 1
    }
}

// SubTypes: PassManager<Module>, PassManager<FunctionValue>
/// A manager for running optimization and simplification passes. Much of the
/// documentation for specific passes is directly from the [LLVM
/// documentation](https://llvm.org/docs/Passes.html).
#[derive(Debug)]
pub struct PassManager<T> {
    pub(crate) pass_manager: LLVMPassManagerRef,
    sub_type: PhantomData<T>,
}

impl PassManager<FunctionValue<'_>> {
    /// Acquires the underlying raw pointer belonging to this `PassManager<T>` type.
    pub fn as_mut_ptr(&self) -> LLVMPassManagerRef {
        self.pass_manager
    }

    // return true means some pass modified the module, not an error occurred
    pub fn initialize(&self) -> bool {
        unsafe { LLVMInitializeFunctionPassManager(self.pass_manager) == 1 }
    }

    pub fn finalize(&self) -> bool {
        unsafe { LLVMFinalizeFunctionPassManager(self.pass_manager) == 1 }
    }
}

impl<T: PassManagerSubType> PassManager<T> {
    pub unsafe fn new(pass_manager: LLVMPassManagerRef) -> Self {
        assert!(!pass_manager.is_null());

        PassManager {
            pass_manager,
            sub_type: PhantomData,
        }
    }

    pub fn create<I: Borrow<T::Input>>(input: I) -> PassManager<T> {
        let pass_manager = unsafe { T::create(input) };

        unsafe { PassManager::new(pass_manager) }
    }

    /// This method returns true if any of the passes modified the function or module
    /// and false otherwise.
    pub fn run_on(&self, input: &T) -> bool {
        unsafe { input.run_in_pass_manager(self) }
    }

    /// This pass promotes "by reference" arguments to be "by value" arguments.
    /// In practice, this means looking for internal functions that have pointer
    /// arguments. If it can prove, through the use of alias analysis, that an
    /// argument is only loaded, then it can pass the value into the function
    /// instead of the address of the value. This can cause recursive simplification
    /// of code and lead to the elimination of allocas (especially in C++ template
    /// code like the STL).
    ///
    /// This pass also handles aggregate arguments that are passed into a function,
    /// scalarizing them if the elements of the aggregate are only loaded. Note that
    /// it refuses to scalarize aggregates which would require passing in more than
    /// three operands to the function, because passing thousands of operands for a
    /// large array or structure is unprofitable!
    ///
    /// Note that this transformation could also be done for arguments that are
    /// only stored to (returning the value instead), but does not currently.
    /// This case would be best handled when and if LLVM starts supporting multiple
    /// return values from functions.
    #[llvm_versions(4.0..=14.0)]
    pub fn add_argument_promotion_pass(&self) {
        use llvm_sys::transforms::ipo::LLVMAddArgumentPromotionPass;

        unsafe { LLVMAddArgumentPromotionPass(self.pass_manager) }
    }

    /// Merges duplicate global constants together into a single constant that is
    /// shared. This is useful because some passes (i.e., TraceValues) insert a lot
    /// of string constants into the program, regardless of whether or not an existing
    /// string is available.
    #[llvm_versions(4.0..=16.0)]
    pub fn add_constant_merge_pass(&self) {
        unsafe { LLVMAddConstantMergePass(self.pass_manager) }
    }

    /// Discovers identical functions and collapses them.
    #[llvm_versions(10.0..=16.0)]
    pub fn add_merge_functions_pass(&self) {
        unsafe { LLVMAddMergeFunctionsPass(self.pass_manager) }
    }

    /// This pass deletes dead arguments from internal functions. Dead argument
    /// elimination removes arguments which are directly dead, as well as arguments
    /// only passed into function calls as dead arguments of other functions. This
    /// pass also deletes dead arguments in a similar way.
    ///
    /// This pass is often useful as a cleanup pass to run after aggressive
    /// interprocedural passes, which add possibly-dead arguments.
    #[llvm_versions(4.0..=16.0)]
    pub fn add_dead_arg_elimination_pass(&self) {
        unsafe { LLVMAddDeadArgEliminationPass(self.pass_manager) }
    }

    /// A simple interprocedural pass which walks the call-graph, looking for
    /// functions which do not access or only read non-local memory, and marking
    /// them readnone/readonly. In addition, it marks function arguments (of
    /// pointer type) “nocapture” if a call to the function does not create
    /// any copies of the pointer value that outlive the call. This more or
    /// less means that the pointer is only dereferenced, and not returned
    /// from the function or stored in a global. This pass is implemented
    /// as a bottom-up traversal of the call-graph.
    #[llvm_versions(4.0..=16.0)]
    pub fn add_function_attrs_pass(&self) {
        unsafe { LLVMAddFunctionAttrsPass(self.pass_manager) }
    }

    /// Bottom-up inlining of functions into callees.
    #[llvm_versions(4.0..=16.0)]
    pub fn add_function_inlining_pass(&self) {
        unsafe { LLVMAddFunctionInliningPass(self.pass_manager) }
    }

    /// A custom inliner that handles only functions that are marked as “always inline”.
    #[llvm_versions(4.0..=16.0)]
    pub fn add_always_inliner_pass(&self) {
        unsafe { LLVMAddAlwaysInlinerPass(self.pass_manager) }
    }

    /// This transform is designed to eliminate unreachable internal
    /// globals from the program. It uses an aggressive algorithm,
    /// searching out globals that are known to be alive. After it
    /// finds all of the globals which are needed, it deletes
    /// whatever is left over. This allows it to delete recursive
    /// chunks of the program which are unreachable.
    #[llvm_versions(4.0..=16.0)]
    pub fn add_global_dce_pass(&self) {
        unsafe { LLVMAddGlobalDCEPass(self.pass_manager) }
    }

    /// This pass transforms simple global variables that never have
    /// their address taken. If obviously true, it marks read/write
    /// globals as constant, deletes variables only stored to, etc.
    #[llvm_versions(4.0..=16.0)]
    pub fn add_global_optimizer_pass(&self) {
        unsafe { LLVMAddGlobalOptimizerPass(self.pass_manager) }
    }

    /// This pass implements an extremely simple interprocedural
    /// constant propagation pass. It could certainly be improved
    /// in many different ways, like using a worklist. This pass
    /// makes arguments dead, but does not remove them. The existing
    /// dead argument elimination pass should be run after this to
    /// clean up the mess.
    ///
    /// In LLVM 12 and later, this instruction is replaced by the
    /// [`add_instruction_simplify_pass`].
    #[llvm_versions(4.0..=11.0)]
    pub fn add_ip_constant_propagation_pass(&self) {
        unsafe { LLVMAddIPConstantPropagationPass(self.pass_manager) }
    }

    /// This file implements a simple interprocedural pass which
    /// walks the call-graph, turning invoke instructions into
    /// call instructions if and only if the callee cannot throw
    /// an exception. It implements this as a bottom-up traversal
    /// of the call-graph.
    #[llvm_versions(4.0..=15.0)]
    pub fn add_prune_eh_pass(&self) {
        unsafe { LLVMAddPruneEHPass(self.pass_manager) }
    }

    /// An interprocedural variant of [Sparse Conditional Constant
    /// Propagation](https://llvm.org/docs/Passes.html#passes-sccp).
    #[llvm_versions(4.0..=16.0)]
    pub fn add_ipsccp_pass(&self) {
        unsafe { LLVMAddIPSCCPPass(self.pass_manager) }
    }

    /// This pass loops over all of the functions in the input module,
    /// looking for a main function. If a main function is found, all
    /// other functions and all global variables with initializers are
    /// marked as internal.
    #[llvm_versions(4.0..=16.0)]
    pub fn add_internalize_pass(&self, all_but_main: bool) {
        unsafe { LLVMAddInternalizePass(self.pass_manager, all_but_main as u32) }
    }

    /// This pass loops over all of the functions in the input module,
    /// looking for dead declarations and removes them. Dead declarations
    /// are declarations of functions for which no implementation is available
    /// (i.e., declarations for unused library functions).
    #[llvm_versions(4.0..=16.0)]
    pub fn add_strip_dead_prototypes_pass(&self) {
        unsafe { LLVMAddStripDeadPrototypesPass(self.pass_manager) }
    }

    /// Performs code stripping. This transformation can delete:
    ///
    /// * Names for virtual registers
    /// * Symbols for internal globals and functions
    /// * Debug information
    ///
    /// Note that this transformation makes code much less readable,
    /// so it should only be used in situations where the strip utility
    /// would be used, such as reducing code size or making it harder
    /// to reverse engineer code.
    #[llvm_versions(4.0..=16.0)]
    pub fn add_strip_symbol_pass(&self) {
        unsafe { LLVMAddStripSymbolsPass(self.pass_manager) }
    }

    /// This pass combines instructions inside basic blocks to form
    /// vector instructions. It iterates over each basic block,
    /// attempting to pair compatible instructions, repeating this
    /// process until no additional pairs are selected for vectorization.
    /// When the outputs of some pair of compatible instructions are
    /// used as inputs by some other pair of compatible instructions,
    /// those pairs are part of a potential vectorization chain.
    /// Instruction pairs are only fused into vector instructions when
    /// they are part of a chain longer than some threshold length.
    /// Moreover, the pass attempts to find the best possible chain
    /// for each pair of compatible instructions. These heuristics
    /// are intended to prevent vectorization in cases where it would
    /// not yield a performance increase of the resulting code.
    #[cfg(feature = "llvm4-0")]
    pub fn add_bb_vectorize_pass(&self) {
        use llvm_sys::transforms::vectorize::LLVMAddBBVectorizePass;

        unsafe { LLVMAddBBVectorizePass(self.pass_manager) }
    }

    /// No LLVM documentation is available at this time.
    #[llvm_versions(4.0..=16.0)]
    pub fn add_loop_vectorize_pass(&self) {
        unsafe { LLVMAddLoopVectorizePass(self.pass_manager) }
    }

    /// No LLVM documentation is available at this time.
    #[llvm_versions(4.0..=16.0)]
    pub fn add_slp_vectorize_pass(&self) {
        unsafe { LLVMAddSLPVectorizePass(self.pass_manager) }
    }

    /// ADCE aggressively tries to eliminate code. This pass is similar
    /// to [DCE](https://llvm.org/docs/Passes.html#passes-dce) but it
    /// assumes that values are dead until proven otherwise. This is
    /// similar to [SCCP](https://llvm.org/docs/Passes.html#passes-sccp),
    /// except applied to the liveness of values.
    #[llvm_versions(4.0..=16.0)]
    pub fn add_aggressive_dce_pass(&self) {
        unsafe { LLVMAddAggressiveDCEPass(self.pass_manager) }
    }

    /// No LLVM documentation is available at this time.
    #[llvm_versions(4.0..=16.0)]
    pub fn add_bit_tracking_dce_pass(&self) {
        unsafe { LLVMAddBitTrackingDCEPass(self.pass_manager) }
    }

    /// No LLVM documentation is available at this time.
    #[llvm_versions(4.0..=16.0)]
    pub fn add_alignment_from_assumptions_pass(&self) {
        unsafe { LLVMAddAlignmentFromAssumptionsPass(self.pass_manager) }
    }

    /// Performs dead code elimination and basic block merging. Specifically:
    ///
    /// * Removes basic blocks with no predecessors.
    /// * Merges a basic block into its predecessor if there is only one and the predecessor only has one successor.
    /// * Eliminates PHI nodes for basic blocks with a single predecessor.
    /// * Eliminates a basic block that only contains an unconditional branch.
    #[llvm_versions(4.0..=16.0)]
    pub fn add_cfg_simplification_pass(&self) {
        unsafe { LLVMAddCFGSimplificationPass(self.pass_manager) }
    }

    /// A trivial dead store elimination that only considers basic-block local redundant stores.
    #[llvm_versions(4.0..=16.0)]
    pub fn add_dead_store_elimination_pass(&self) {
        unsafe { LLVMAddDeadStoreEliminationPass(self.pass_manager) }
    }

    /// No LLVM documentation is available at this time.
    #[llvm_versions(4.0..=16.0)]
    pub fn add_scalarizer_pass(&self) {
        unsafe { LLVMAddScalarizerPass(self.pass_manager) }
    }

    /// No LLVM documentation is available at this time.
    #[llvm_versions(4.0..=16.0)]
    pub fn add_merged_load_store_motion_pass(&self) {
        unsafe { LLVMAddMergedLoadStoreMotionPass(self.pass_manager) }
    }

    /// This pass performs global value numbering to eliminate
    /// fully and partially redundant instructions. It also
    /// performs redundant load elimination.
    #[llvm_versions(4.0..=16.0)]
    pub fn add_gvn_pass(&self) {
        unsafe { LLVMAddGVNPass(self.pass_manager) }
    }

    /// This pass performs global value numbering to eliminate
    /// fully and partially redundant instructions. It also
    /// performs redundant load elimination.
    // REVIEW: Is `LLVMAddGVNPass` deprecated? Should we just seamlessly replace
    // the old one with this one in 4.0+?
    #[llvm_versions(4.0..=16.0)]
    pub fn add_new_gvn_pass(&self) {
        use llvm_sys::transforms::scalar::LLVMAddNewGVNPass;

        unsafe { LLVMAddNewGVNPass(self.pass_manager) }
    }

    /// This transformation analyzes and transforms the induction variables (and
    /// computations derived from them) into simpler forms suitable for subsequent
    /// analysis and transformation.
    ///
    /// This transformation makes the following changes to each loop with an
    /// identifiable induction variable:
    ///
    /// * All loops are transformed to have a single canonical induction variable
    /// which starts at zero and steps by one.
    ///
    /// * The canonical induction variable is guaranteed to be the first PHI node
    /// in the loop header block.
    ///
    /// * Any pointer arithmetic recurrences are raised to use array subscripts.
    ///
    /// If the trip count of a loop is computable, this pass also makes the
    /// following changes:
    ///
    /// * The exit condition for the loop is canonicalized to compare the induction
    /// value against the exit value. This turns loops like:
    ///
    /// ```c
    /// for (i = 7; i*i < 1000; ++i)
    /// ```
    /// into
    /// ```c
    /// for (i = 0; i != 25; ++i)
    /// ```
    ///
    /// * Any use outside of the loop of an expression derived from the indvar is
    /// changed to compute the derived value outside of the loop, eliminating the
    /// dependence on the exit value of the induction variable. If the only purpose
    /// of the loop is to compute the exit value of some derived expression, this
    /// transformation will make the loop dead.
    ///
    /// This transformation should be followed by strength reduction after all of
    /// the desired loop transformations have been performed. Additionally, on
    /// targets where it is profitable, the loop could be transformed to count
    /// down to zero (the "do loop" optimization).
    #[llvm_versions(4.0..=16.0)]
    pub fn add_ind_var_simplify_pass(&self) {
        unsafe { LLVMAddIndVarSimplifyPass(self.pass_manager) }
    }

    /// Combine instructions to form fewer, simple instructions. This pass
    /// does not modify the CFG. This pass is where algebraic simplification happens.
    ///
    /// This pass combines things like:
    ///
    /// ```c
    /// %Y = add i32 %X, 1
    /// %Z = add i32 %Y, 1
    /// ```
    /// into:
    /// ```c
    /// %Z = add i32 %X, 2
    /// ```
    ///
    /// This is a simple worklist driven algorithm.
    ///
    /// This pass guarantees that the following canonicalization are performed
    /// on the program:
    ///
    /// 1. If a binary operator has a constant operand, it is moved to the
    /// right-hand side.
    ///
    /// 2. Bitwise operators with constant operands are always grouped so that
    /// shifts are performed first, then ors, then ands, then xors.
    ///
    /// 3. Compare instructions are converted from <, >, ≤, or ≥ to = or ≠ if possible.
    ///
    /// 4. All cmp instructions on boolean values are replaced with logical operations.
    ///
    /// 5. add X, X is represented as mul X, 2 ⇒ shl X, 1
    ///
    /// 6. Multiplies with a constant power-of-two argument are transformed into shifts.
    ///
    /// 7. ... etc.
    ///
    /// This pass can also simplify calls to specific well-known function calls
    /// (e.g. runtime library functions). For example, a call exit(3) that occurs within
    /// the main() function can be transformed into simply return 3. Whether or not library
    /// calls are simplified is controlled by the [-functionattrs](https://llvm.org/docs/Passes.html#passes-functionattrs)
    /// pass and LLVM’s knowledge of library calls on different targets.
    #[llvm_versions(4.0..=16.0)]
    pub fn add_instruction_combining_pass(&self) {
        unsafe { LLVMAddInstructionCombiningPass(self.pass_manager) }
    }

    /// Jump threading tries to find distinct threads of control flow
    /// running through a basic block. This pass looks at blocks that
    /// have multiple predecessors and multiple successors. If one or
    /// more of the predecessors of the block can be proven to always
    /// cause a jump to one of the successors, we forward the edge from
    /// the predecessor to the successor by duplicating the contents of
    /// this block.
    ///
    /// An example of when this can occur is code like this:
    ///
    /// ```c
    /// if () { ...
    ///   X = 4;
    /// }
    /// if (X < 3) {
    /// ```
    ///
    /// In this case, the unconditional branch at the end of the first
    /// if can be revectored to the false side of the second if.
    #[llvm_versions(4.0..=16.0)]
    pub fn add_jump_threading_pass(&self) {
        unsafe { LLVMAddJumpThreadingPass(self.pass_manager) }
    }

    /// This pass performs loop invariant code motion,
    /// attempting to remove as much code from the body of
    /// a loop as possible. It does this by either hoisting
    /// code into the preheader block, or by sinking code to
    /// the exit blocks if it is safe. This pass also promotes
    /// must-aliased memory locations in the loop to live in
    /// registers, thus hoisting and sinking “invariant” loads
    /// and stores.
    ///
    /// This pass uses alias analysis for two purposes:
    ///
    /// 1. Moving loop invariant loads and calls out of loops.
    /// If we can determine that a load or call inside of a
    /// loop never aliases anything stored to, we can hoist
    /// it or sink it like any other instruction.
    ///
    /// 2. Scalar Promotion of Memory. If there is a store
    /// instruction inside of the loop, we try to move the
    /// store to happen AFTER the loop instead of inside of
    /// the loop. This can only happen if a few conditions
    /// are true:
    ///
    ///     1. The pointer stored through is loop invariant.
    ///
    ///     2. There are no stores or loads in the loop
    /// which may alias the pointer. There are no calls in
    /// the loop which mod/ref the pointer.
    ///
    /// If these conditions are true, we can promote the loads
    /// and stores in the loop of the pointer to use a temporary
    /// alloca'd variable. We then use the mem2reg functionality
    /// to construct the appropriate SSA form for the variable.
    #[llvm_versions(4.0..=16.0)]
    pub fn add_licm_pass(&self) {
        unsafe { LLVMAddLICMPass(self.pass_manager) }
    }

    /// This file implements the Dead Loop Deletion Pass.
    /// This pass is responsible for eliminating loops with
    /// non-infinite computable trip counts that have no side
    /// effects or volatile instructions, and do not contribute
    /// to the computation of the function’s return value.
    #[llvm_versions(4.0..=16.0)]
    pub fn add_loop_deletion_pass(&self) {
        unsafe { LLVMAddLoopDeletionPass(self.pass_manager) }
    }

    /// No LLVM documentation is available at this time.
    #[llvm_versions(4.0..=16.0)]
    pub fn add_loop_idiom_pass(&self) {
        unsafe { LLVMAddLoopIdiomPass(self.pass_manager) }
    }

    /// A simple loop rotation transformation.
    #[llvm_versions(4.0..=16.0)]
    pub fn add_loop_rotate_pass(&self) {
        unsafe { LLVMAddLoopRotatePass(self.pass_manager) }
    }

    /// No LLVM documentation is available at this time.
    #[llvm_versions(4.0..=16.0)]
    pub fn add_loop_reroll_pass(&self) {
        unsafe { LLVMAddLoopRerollPass(self.pass_manager) }
    }

    /// This pass implements a simple loop unroller.
    /// It works best when loops have been canonicalized
    /// by the [indvars](https://llvm.org/docs/Passes.html#passes-indvars)
    /// pass, allowing it to determine the trip counts
    /// of loops easily.
    #[llvm_versions(4.0..=16.0)]
    pub fn add_loop_unroll_pass(&self) {
        unsafe { LLVMAddLoopUnrollPass(self.pass_manager) }
    }

    /// This pass transforms loops that contain branches on
    /// loop-invariant conditions to have multiple loops.
    /// For example, it turns the left into the right code:
    ///
    /// ```c
    /// for (...)                  if (lic)
    ///     A                          for (...)
    ///     if (lic)                       A; B; C
    ///         B                  else
    ///     C                          for (...)
    ///                                    A; C
    /// ```
    ///
    /// This can increase the size of the code exponentially
    /// (doubling it every time a loop is unswitched) so we
    /// only unswitch if the resultant code will be smaller
    /// than a threshold.
    ///
    /// This pass expects [LICM](https://llvm.org/docs/Passes.html#passes-licm)
    /// to be run before it to hoist invariant conditions
    /// out of the loop, to make the unswitching opportunity
    /// obvious.
    #[llvm_versions(4.0..=14.0)]
    pub fn add_loop_unswitch_pass(&self) {
        use llvm_sys::transforms::scalar::LLVMAddLoopUnswitchPass;

        unsafe { LLVMAddLoopUnswitchPass(self.pass_manager) }
    }

    /// This pass performs various transformations related
    /// to eliminating memcpy calls, or transforming sets
    /// of stores into memsets.
    #[llvm_versions(4.0..=16.0)]
    pub fn add_memcpy_optimize_pass(&self) {
        unsafe { LLVMAddMemCpyOptPass(self.pass_manager) }
    }

    /// This pass performs partial inlining, typically by inlining
    /// an if statement that surrounds the body of the function.
    #[llvm_versions(4.0..=16.0)]
    pub fn add_partially_inline_lib_calls_pass(&self) {
        unsafe { LLVMAddPartiallyInlineLibCallsPass(self.pass_manager) }
    }

    /// Rewrites switch instructions with a sequence of branches,
    /// which allows targets to get away with not implementing the
    /// switch instruction until it is convenient.
    #[llvm_versions(4.0..=16.0)]
    pub fn add_lower_switch_pass(&self) {
        #[llvm_versions(4.0..=6.0)]
        use llvm_sys::transforms::scalar::LLVMAddLowerSwitchPass;
        #[llvm_versions(7.0..=16.0)]
        use llvm_sys::transforms::util::LLVMAddLowerSwitchPass;

        unsafe { LLVMAddLowerSwitchPass(self.pass_manager) }
    }

    /// This file promotes memory references to be register references.
    /// It promotes alloca instructions which only have loads and stores
    /// as uses. An alloca is transformed by using dominator frontiers
    /// to place phi nodes, then traversing the function in depth-first
    /// order to rewrite loads and stores as appropriate. This is just
    /// the standard SSA construction algorithm to construct "pruned" SSA form.
    #[llvm_versions(4.0..=16.0)]
    pub fn add_promote_memory_to_register_pass(&self) {
        #[llvm_versions(4.0..=6.0)]
        use llvm_sys::transforms::scalar::LLVMAddPromoteMemoryToRegisterPass;
        #[llvm_versions(7.0..=16.0)]
        use llvm_sys::transforms::util::LLVMAddPromoteMemoryToRegisterPass;

        unsafe { LLVMAddPromoteMemoryToRegisterPass(self.pass_manager) }
    }

    /// This pass reassociates commutative expressions in an order that is designed
    /// to promote better constant propagation, GCSE, LICM, PRE, etc.
    ///
    /// For example: 4 + (x + 5) ⇒ x + (4 + 5)
    ///
    /// In the implementation of this algorithm, constants are assigned rank = 0,
    /// function arguments are rank = 1, and other values are assigned ranks
    /// corresponding to the reverse post order traversal of current function
    /// (starting at 2), which effectively gives values in deep loops higher
    /// rank than values not in loops.
    #[llvm_versions(4.0..=16.0)]
    pub fn add_reassociate_pass(&self) {
        unsafe { LLVMAddReassociatePass(self.pass_manager) }
    }

    /// Sparse conditional constant propagation and merging, which can
    /// be summarized as:
    ///
    /// * Assumes values are constant unless proven otherwise
    /// * Assumes BasicBlocks are dead unless proven otherwise
    /// * Proves values to be constant, and replaces them with constants
    /// * Proves conditional branches to be unconditional
    ///
    /// Note that this pass has a habit of making definitions be dead.
    /// It is a good idea to run a DCE pass sometime after running this pass.
    #[llvm_versions(4.0..=16.0)]
    pub fn add_sccp_pass(&self) {
        unsafe { LLVMAddSCCPPass(self.pass_manager) }
    }

    /// No LLVM documentation is available at this time.
    #[llvm_versions(4.0..=16.0)]
    pub fn add_scalar_repl_aggregates_pass(&self) {
        unsafe { LLVMAddScalarReplAggregatesPass(self.pass_manager) }
    }

    /// The well-known scalar replacement of aggregates transformation.
    /// This transform breaks up alloca instructions of aggregate type
    /// (structure or array) into individual alloca instructions for each
    /// member if possible. Then, if possible, it transforms the individual
    /// alloca instructions into nice clean scalar SSA form.
    #[llvm_versions(4.0..=16.0)]
    pub fn add_scalar_repl_aggregates_pass_ssa(&self) {
        unsafe { LLVMAddScalarReplAggregatesPassSSA(self.pass_manager) }
    }

    /// No LLVM documentation is available at this time.
    #[llvm_versions(4.0..=16.0)]
    pub fn add_scalar_repl_aggregates_pass_with_threshold(&self, threshold: i32) {
        unsafe { LLVMAddScalarReplAggregatesPassWithThreshold(self.pass_manager, threshold) }
    }

    /// No LLVM documentation is available at this time.
    #[llvm_versions(4.0..=16.0)]
    pub fn add_simplify_lib_calls_pass(&self) {
        unsafe { LLVMAddSimplifyLibCallsPass(self.pass_manager) }
    }

    /// This file transforms calls of the current function (self recursion) followed
    /// by a return instruction with a branch to the entry of the function, creating
    /// a loop. This pass also implements the following extensions to the basic algorithm:
    ///
    /// 1. Trivial instructions between the call and return do not prevent the
    /// transformation from taking place, though currently the analysis cannot support
    /// moving any really useful instructions (only dead ones).
    ///
    /// 2. This pass transforms functions that are prevented from being tail
    /// recursive by an associative expression to use an accumulator variable, thus
    /// compiling the typical naive factorial or fib implementation into efficient code.
    ///
    /// 3. TRE is performed if the function returns void, if the return returns
    /// the result returned by the call, or if the function returns a run-time constant
    /// on all exits from the function. It is possible, though unlikely, that the return
    /// returns something else (like constant 0), and can still be TRE’d. It can be
    /// TRE'd if all other return instructions in the function return the exact same value.
    ///
    /// 4. If it can prove that callees do not access theier caller stack frame,
    /// they are marked as eligible for tail call elimination (by the code generator).
    #[llvm_versions(4.0..=16.0)]
    pub fn add_tail_call_elimination_pass(&self) {
        unsafe { LLVMAddTailCallEliminationPass(self.pass_manager) }
    }

    /// This pass implements constant propagation and merging. It looks for instructions
    /// involving only constant operands and replaces them with a constant value instead
    /// of an instruction. For example:
    ///
    /// ```ir
    /// add i32 1, 2
    /// ```
    ///
    /// becomes
    ///
    /// ```ir
    /// i32 3
    /// ```
    ///
    /// NOTE: this pass has a habit of making definitions be dead. It is a good idea to
    /// run a Dead Instruction Elimination pass sometime after running this pass.
    ///
    /// In LLVM 12 and later, this instruction is replaced by the
    /// [`add_instruction_simplify_pass`].
    #[llvm_versions(4.0..=11.0)]
    pub fn add_constant_propagation_pass(&self) {
        unsafe { LLVMAddConstantPropagationPass(self.pass_manager) }
    }

    /// This pass implements constant propagation and merging. It looks for instructions
    /// involving only constant operands and replaces them with a constant value instead
    /// of an instruction. For example:
    ///
    /// ```ir
    /// add i32 1, 2
    /// ```
    ///
    /// becomes
    ///
    /// ```ir
    /// i32 3
    /// ```
    ///
    /// NOTE: this pass has a habit of making definitions be dead. It is a good idea to
    /// run a Dead Instruction Elimination pass sometime after running this pass.
    #[llvm_versions(12.0..=16.0)]
    pub fn add_instruction_simplify_pass(&self) {
        unsafe { LLVMAddInstructionSimplifyPass(self.pass_manager) }
    }

    /// This file promotes memory references to be register references.
    /// It promotes alloca instructions which only have loads and stores
    /// as uses. An alloca is transformed by using dominator frontiers to
    /// place phi nodes, then traversing the function in depth-first order to
    /// rewrite loads and stores as appropriate. This is just the standard SSA
    /// construction algorithm to construct “pruned” SSA form.
    #[llvm_versions(4.0..=16.0)]
    pub fn add_demote_memory_to_register_pass(&self) {
        unsafe { LLVMAddDemoteMemoryToRegisterPass(self.pass_manager) }
    }

    /// Verifies an LLVM IR code. This is useful to run after an optimization
    /// which is undergoing testing. Note that llvm-as verifies its input before
    /// emitting bitcode, and also that malformed bitcode is likely to make
    /// LLVM crash. All language front-ends are therefore encouraged to verify
    /// their output before performing optimizing transformations.
    ///
    /// 1. Both of a binary operator’s parameters are of the same type.
    ///
    /// 2. Verify that the indices of mem access instructions match other operands.
    ///
    /// 3. Verify that arithmetic and other things are only performed on
    /// first-class types. Verify that shifts and logicals only happen on
    /// integrals f.e.
    ///
    /// 4. All of the constants in a switch statement are of the correct type.
    ///
    /// 5. The code is in valid SSA form.
    ///
    /// 6. It is illegal to put a label into any other type (like a structure)
    /// or to return one.
    ///
    /// 7. Only phi nodes can be self referential: %x = add i32 %x, %x is invalid.
    ///
    /// 8. PHI nodes must have an entry for each predecessor, with no extras.
    ///
    /// 9. PHI nodes must be the first thing in a basic block, all grouped together.
    ///
    /// 10. PHI nodes must have at least one entry.
    ///
    /// 11. All basic blocks should only end with terminator insts, not contain them.
    ///
    /// 12. The entry node to a function must not have predecessors.
    ///
    /// 13. All Instructions must be embedded into a basic block.
    ///
    /// 14. Functions cannot take a void-typed parameter.
    ///
    /// 15. Verify that a function’s argument list agrees with its declared type.
    ///
    /// 16. It is illegal to specify a name for a void value.
    ///
    /// 17. It is illegal to have an internal global value with no initializer.
    ///
    /// 18. It is illegal to have a ret instruction that returns a value that does
    /// not agree with the function return value type.
    ///
    /// 19. Function call argument types match the function prototype.
    ///
    /// 20. All other things that are tested by asserts spread about the code.
    ///
    /// Note that this does not provide full security verification (like Java), but instead just tries to ensure that code is well-formed.
    #[llvm_versions(4.0..=16.0)]
    pub fn add_verifier_pass(&self) {
        unsafe { LLVMAddVerifierPass(self.pass_manager) }
    }

    /// No LLVM documentation is available at this time.
    #[llvm_versions(4.0..=16.0)]
    pub fn add_correlated_value_propagation_pass(&self) {
        unsafe { LLVMAddCorrelatedValuePropagationPass(self.pass_manager) }
    }

    /// No LLVM documentation is available at this time.
    #[llvm_versions(4.0..=16.0)]
    pub fn add_early_cse_pass(&self) {
        unsafe { LLVMAddEarlyCSEPass(self.pass_manager) }
    }

    #[llvm_versions(4.0..=16.0)]
    /// No LLVM documentation is available at this time.
    pub fn add_early_cse_mem_ssa_pass(&self) {
        use llvm_sys::transforms::scalar::LLVMAddEarlyCSEMemSSAPass;

        unsafe { LLVMAddEarlyCSEMemSSAPass(self.pass_manager) }
    }

    /// No LLVM documentation is available at this time.
    #[llvm_versions(4.0..=16.0)]
    pub fn add_lower_expect_intrinsic_pass(&self) {
        unsafe { LLVMAddLowerExpectIntrinsicPass(self.pass_manager) }
    }

    /// No LLVM documentation is available at this time.
    #[llvm_versions(4.0..=16.0)]
    pub fn add_type_based_alias_analysis_pass(&self) {
        unsafe { LLVMAddTypeBasedAliasAnalysisPass(self.pass_manager) }
    }

    /// No LLVM documentation is available at this time.
    #[llvm_versions(4.0..=16.0)]
    pub fn add_scoped_no_alias_aa_pass(&self) {
        unsafe { LLVMAddScopedNoAliasAAPass(self.pass_manager) }
    }

    /// A basic alias analysis pass that implements identities
    /// (two different globals cannot alias, etc), but does no
    /// stateful analysis.
    #[llvm_versions(4.0..=16.0)]
    pub fn add_basic_alias_analysis_pass(&self) {
        unsafe { LLVMAddBasicAliasAnalysisPass(self.pass_manager) }
    }

    #[llvm_versions(7.0..=15.0)]
    pub fn add_aggressive_inst_combiner_pass(&self) {
        #[cfg(not(feature = "llvm7-0"))]
        use llvm_sys::transforms::aggressive_instcombine::LLVMAddAggressiveInstCombinerPass;
        #[cfg(feature = "llvm7-0")]
        use llvm_sys::transforms::scalar::LLVMAddAggressiveInstCombinerPass;

        unsafe { LLVMAddAggressiveInstCombinerPass(self.pass_manager) }
    }

    #[llvm_versions(7.0..=16.0)]
    pub fn add_loop_unroll_and_jam_pass(&self) {
        use llvm_sys::transforms::scalar::LLVMAddLoopUnrollAndJamPass;

        unsafe { LLVMAddLoopUnrollAndJamPass(self.pass_manager) }
    }

    #[llvm_versions(8.0..15.0)]
    pub fn add_coroutine_early_pass(&self) {
        use llvm_sys::transforms::coroutines::LLVMAddCoroEarlyPass;

        unsafe { LLVMAddCoroEarlyPass(self.pass_manager) }
    }

    #[llvm_versions(8.0..15.0)]
    pub fn add_coroutine_split_pass(&self) {
        use llvm_sys::transforms::coroutines::LLVMAddCoroSplitPass;

        unsafe { LLVMAddCoroSplitPass(self.pass_manager) }
    }

    #[llvm_versions(8.0..15.0)]
    pub fn add_coroutine_elide_pass(&self) {
        use llvm_sys::transforms::coroutines::LLVMAddCoroElidePass;

        unsafe { LLVMAddCoroElidePass(self.pass_manager) }
    }

    #[llvm_versions(8.0..15.0)]
    pub fn add_coroutine_cleanup_pass(&self) {
        use llvm_sys::transforms::coroutines::LLVMAddCoroCleanupPass;

        unsafe { LLVMAddCoroCleanupPass(self.pass_manager) }
    }
}

impl<T> Drop for PassManager<T> {
    fn drop(&mut self) {
        unsafe { LLVMDisposePassManager(self.pass_manager) }
    }
}

#[llvm_versions(4.0..=16.0)]
#[derive(Debug)]
pub struct PassRegistry {
    pass_registry: LLVMPassRegistryRef,
}

#[llvm_versions(4.0..=16.0)]
impl PassRegistry {
    pub unsafe fn new(pass_registry: LLVMPassRegistryRef) -> PassRegistry {
        assert!(!pass_registry.is_null());

        PassRegistry { pass_registry }
    }

    /// Acquires the underlying raw pointer belonging to this `PassRegistry` type.
    pub fn as_mut_ptr(&self) -> LLVMPassRegistryRef {
        self.pass_registry
    }

    pub fn get_global() -> PassRegistry {
        let pass_registry = unsafe { LLVMGetGlobalPassRegistry() };

        unsafe { PassRegistry::new(pass_registry) }
    }

    pub fn initialize_core(&self) {
        unsafe { LLVMInitializeCore(self.pass_registry) }
    }

    pub fn initialize_transform_utils(&self) {
        unsafe { LLVMInitializeTransformUtils(self.pass_registry) }
    }

    pub fn initialize_scalar_opts(&self) {
        unsafe { LLVMInitializeScalarOpts(self.pass_registry) }
    }

    #[llvm_versions(4.0..=15.0)]
    pub fn initialize_obj_carc_opts(&self) {
        unsafe { LLVMInitializeObjCARCOpts(self.pass_registry) }
    }

    pub fn initialize_vectorization(&self) {
        unsafe { LLVMInitializeVectorization(self.pass_registry) }
    }

    pub fn initialize_inst_combine(&self) {
        unsafe { LLVMInitializeInstCombine(self.pass_registry) }
    }

    // Let us begin our initial public offering
    pub fn initialize_ipo(&self) {
        unsafe { LLVMInitializeIPO(self.pass_registry) }
    }

    #[llvm_versions(4.0..=15.0)]
    pub fn initialize_instrumentation(&self) {
        unsafe { LLVMInitializeInstrumentation(self.pass_registry) }
    }

    pub fn initialize_analysis(&self) {
        unsafe { LLVMInitializeAnalysis(self.pass_registry) }
    }

    pub fn initialize_ipa(&self) {
        unsafe { LLVMInitializeIPA(self.pass_registry) }
    }

    pub fn initialize_codegen(&self) {
        unsafe { LLVMInitializeCodeGen(self.pass_registry) }
    }

    pub fn initialize_target(&self) {
        unsafe { LLVMInitializeTarget(self.pass_registry) }
    }

    #[llvm_versions(7.0..=15.0)]
    pub fn initialize_aggressive_inst_combiner(&self) {
        use llvm_sys::initialization::LLVMInitializeAggressiveInstCombiner;

        unsafe { LLVMInitializeAggressiveInstCombiner(self.pass_registry) }
    }
}

#[llvm_versions(13.0..=latest)]
#[derive(Debug)]
pub struct PassBuilderOptions {
    pub(crate) options_ref: LLVMPassBuilderOptionsRef,
}

#[llvm_versions(13.0..=latest)]
impl PassBuilderOptions {
    /// Create a new set of options for a PassBuilder
    pub fn create() -> Self {
        unsafe {
            PassBuilderOptions {
                options_ref: LLVMCreatePassBuilderOptions(),
            }
        }
    }

    /// Acquires the underlying raw pointer belonging to this `PassBuilderOptions` type.
    pub fn as_mut_ptr(&self) -> LLVMPassBuilderOptionsRef {
        self.options_ref
    }

    ///Toggle adding the VerifierPass for the PassBuilder, ensuring all functions inside the module is valid.
    pub fn set_verify_each(&self, value: bool) {
        unsafe {
            LLVMPassBuilderOptionsSetVerifyEach(self.options_ref, value as i32);
        }
    }

    ///Toggle debug logging when running the PassBuilder.
    pub fn set_debug_logging(&self, value: bool) {
        unsafe {
            LLVMPassBuilderOptionsSetDebugLogging(self.options_ref, value as i32);
        }
    }

    pub fn set_loop_interleaving(&self, value: bool) {
        unsafe {
            LLVMPassBuilderOptionsSetLoopInterleaving(self.options_ref, value as i32);
        }
    }

    pub fn set_loop_vectorization(&self, value: bool) {
        unsafe {
            LLVMPassBuilderOptionsSetLoopVectorization(self.options_ref, value as i32);
        }
    }

    pub fn set_loop_slp_vectorization(&self, value: bool) {
        unsafe {
            LLVMPassBuilderOptionsSetSLPVectorization(self.options_ref, value as i32);
        }
    }

    pub fn set_loop_unrolling(&self, value: bool) {
        unsafe {
            LLVMPassBuilderOptionsSetLoopUnrolling(self.options_ref, value as i32);
        }
    }

    pub fn set_forget_all_scev_in_loop_unroll(&self, value: bool) {
        unsafe {
            LLVMPassBuilderOptionsSetForgetAllSCEVInLoopUnroll(self.options_ref, value as i32);
        }
    }

    pub fn set_licm_mssa_opt_cap(&self, value: u32) {
        unsafe {
            LLVMPassBuilderOptionsSetLicmMssaOptCap(self.options_ref, value);
        }
    }

    pub fn set_licm_mssa_no_acc_for_promotion_cap(&self, value: u32) {
        unsafe {
            LLVMPassBuilderOptionsSetLicmMssaNoAccForPromotionCap(self.options_ref, value);
        }
    }

    pub fn set_call_graph_profile(&self, value: bool) {
        unsafe {
            LLVMPassBuilderOptionsSetCallGraphProfile(self.options_ref, value as i32);
        }
    }

    pub fn set_merge_functions(&self, value: bool) {
        unsafe {
            LLVMPassBuilderOptionsSetMergeFunctions(self.options_ref, value as i32);
        }
    }
}

#[llvm_versions(13.0..=latest)]
impl Drop for PassBuilderOptions {
    fn drop(&mut self) {
        unsafe {
            LLVMDisposePassBuilderOptions(self.options_ref);
        }
    }
}