1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308
#[llvm_versions(4.0..=16.0)]
use llvm_sys::core::LLVMGetGlobalPassRegistry;
use llvm_sys::core::{
LLVMCreateFunctionPassManagerForModule, LLVMCreatePassManager, LLVMDisposePassManager,
LLVMFinalizeFunctionPassManager, LLVMInitializeFunctionPassManager, LLVMRunFunctionPassManager, LLVMRunPassManager,
};
#[llvm_versions(4.0..=16.0)]
use llvm_sys::initialization::{
LLVMInitializeAnalysis, LLVMInitializeCodeGen, LLVMInitializeCore, LLVMInitializeIPA, LLVMInitializeIPO,
LLVMInitializeInstCombine, LLVMInitializeScalarOpts, LLVMInitializeTarget, LLVMInitializeTransformUtils,
LLVMInitializeVectorization,
};
#[llvm_versions(4.0..=15.0)]
use llvm_sys::initialization::{LLVMInitializeInstrumentation, LLVMInitializeObjCARCOpts};
use llvm_sys::prelude::LLVMPassManagerRef;
#[llvm_versions(4.0..=16.0)]
use llvm_sys::prelude::LLVMPassRegistryRef;
#[llvm_versions(10.0..=16.0)]
use llvm_sys::transforms::ipo::LLVMAddMergeFunctionsPass;
#[llvm_versions(4.0..=15.0)]
use llvm_sys::transforms::ipo::LLVMAddPruneEHPass;
#[llvm_versions(4.0..=16.0)]
use llvm_sys::transforms::ipo::{
LLVMAddAlwaysInlinerPass, LLVMAddConstantMergePass, LLVMAddDeadArgEliminationPass, LLVMAddFunctionAttrsPass,
LLVMAddFunctionInliningPass, LLVMAddGlobalDCEPass, LLVMAddGlobalOptimizerPass, LLVMAddIPSCCPPass,
LLVMAddInternalizePass, LLVMAddStripDeadPrototypesPass, LLVMAddStripSymbolsPass,
};
#[llvm_versions(4.0..=16.0)]
use llvm_sys::transforms::pass_manager_builder::{
LLVMPassManagerBuilderCreate, LLVMPassManagerBuilderDispose, LLVMPassManagerBuilderPopulateFunctionPassManager,
LLVMPassManagerBuilderPopulateModulePassManager, LLVMPassManagerBuilderRef,
LLVMPassManagerBuilderSetDisableSimplifyLibCalls, LLVMPassManagerBuilderSetDisableUnitAtATime,
LLVMPassManagerBuilderSetDisableUnrollLoops, LLVMPassManagerBuilderSetOptLevel, LLVMPassManagerBuilderSetSizeLevel,
LLVMPassManagerBuilderUseInlinerWithThreshold,
};
#[llvm_versions(4.0..=16.0)]
use llvm_sys::transforms::scalar::{
LLVMAddAggressiveDCEPass, LLVMAddAlignmentFromAssumptionsPass, LLVMAddBasicAliasAnalysisPass,
LLVMAddBitTrackingDCEPass, LLVMAddCFGSimplificationPass, LLVMAddCorrelatedValuePropagationPass,
LLVMAddDeadStoreEliminationPass, LLVMAddDemoteMemoryToRegisterPass, LLVMAddEarlyCSEPass, LLVMAddGVNPass,
LLVMAddIndVarSimplifyPass, LLVMAddInstructionCombiningPass, LLVMAddJumpThreadingPass, LLVMAddLICMPass,
LLVMAddLoopDeletionPass, LLVMAddLoopIdiomPass, LLVMAddLoopRerollPass, LLVMAddLoopRotatePass, LLVMAddLoopUnrollPass,
LLVMAddLowerExpectIntrinsicPass, LLVMAddMemCpyOptPass, LLVMAddMergedLoadStoreMotionPass,
LLVMAddPartiallyInlineLibCallsPass, LLVMAddReassociatePass, LLVMAddSCCPPass, LLVMAddScalarReplAggregatesPass,
LLVMAddScalarReplAggregatesPassSSA, LLVMAddScalarReplAggregatesPassWithThreshold, LLVMAddScalarizerPass,
LLVMAddScopedNoAliasAAPass, LLVMAddSimplifyLibCallsPass, LLVMAddTailCallEliminationPass,
LLVMAddTypeBasedAliasAnalysisPass, LLVMAddVerifierPass,
};
#[llvm_versions(4.0..=16.0)]
use llvm_sys::transforms::vectorize::{LLVMAddLoopVectorizePass, LLVMAddSLPVectorizePass};
// LLVM12 removes the ConstantPropagation pass
// Users should use the InstSimplify pass instead.
#[llvm_versions(4.0..=11.0)]
use llvm_sys::transforms::ipo::LLVMAddIPConstantPropagationPass;
#[llvm_versions(4.0..=11.0)]
use llvm_sys::transforms::scalar::LLVMAddConstantPropagationPass;
#[llvm_versions(13.0..=latest)]
use llvm_sys::transforms::pass_builder::{
LLVMCreatePassBuilderOptions, LLVMDisposePassBuilderOptions, LLVMPassBuilderOptionsRef,
LLVMPassBuilderOptionsSetCallGraphProfile, LLVMPassBuilderOptionsSetDebugLogging,
LLVMPassBuilderOptionsSetForgetAllSCEVInLoopUnroll, LLVMPassBuilderOptionsSetLicmMssaNoAccForPromotionCap,
LLVMPassBuilderOptionsSetLicmMssaOptCap, LLVMPassBuilderOptionsSetLoopInterleaving,
LLVMPassBuilderOptionsSetLoopUnrolling, LLVMPassBuilderOptionsSetLoopVectorization,
LLVMPassBuilderOptionsSetMergeFunctions, LLVMPassBuilderOptionsSetSLPVectorization,
LLVMPassBuilderOptionsSetVerifyEach,
};
#[llvm_versions(12.0..=16.0)]
use llvm_sys::transforms::scalar::LLVMAddInstructionSimplifyPass;
use crate::module::Module;
use crate::values::{AsValueRef, FunctionValue};
#[llvm_versions(4.0..=16.0)]
use crate::OptimizationLevel;
use std::borrow::Borrow;
use std::marker::PhantomData;
// REVIEW: Opt Level might be identical to targets::Option<CodeGenOptLevel>
#[llvm_versions(4.0..=16.0)]
#[derive(Debug)]
pub struct PassManagerBuilder {
pass_manager_builder: LLVMPassManagerBuilderRef,
}
#[llvm_versions(4.0..=16.0)]
impl PassManagerBuilder {
pub unsafe fn new(pass_manager_builder: LLVMPassManagerBuilderRef) -> Self {
assert!(!pass_manager_builder.is_null());
PassManagerBuilder { pass_manager_builder }
}
/// Acquires the underlying raw pointer belonging to this `PassManagerBuilder` type.
pub fn as_mut_ptr(&self) -> LLVMPassManagerBuilderRef {
self.pass_manager_builder
}
pub fn create() -> Self {
let pass_manager_builder = unsafe { LLVMPassManagerBuilderCreate() };
unsafe { PassManagerBuilder::new(pass_manager_builder) }
}
pub fn set_optimization_level(&self, opt_level: OptimizationLevel) {
unsafe { LLVMPassManagerBuilderSetOptLevel(self.pass_manager_builder, opt_level as u32) }
}
// REVIEW: Valid input 0-2 according to llvmlite. Maybe better as an enum?
pub fn set_size_level(&self, size_level: u32) {
unsafe { LLVMPassManagerBuilderSetSizeLevel(self.pass_manager_builder, size_level) }
}
pub fn set_disable_unit_at_a_time(&self, disable: bool) {
unsafe { LLVMPassManagerBuilderSetDisableUnitAtATime(self.pass_manager_builder, disable as i32) }
}
pub fn set_disable_unroll_loops(&self, disable: bool) {
unsafe { LLVMPassManagerBuilderSetDisableUnrollLoops(self.pass_manager_builder, disable as i32) }
}
pub fn set_disable_simplify_lib_calls(&self, disable: bool) {
unsafe { LLVMPassManagerBuilderSetDisableSimplifyLibCalls(self.pass_manager_builder, disable as i32) }
}
pub fn set_inliner_with_threshold(&self, threshold: u32) {
unsafe { LLVMPassManagerBuilderUseInlinerWithThreshold(self.pass_manager_builder, threshold) }
}
/// Populates a PassManager<FunctionValue> with the expectation of function
/// transformations.
///
/// # Example
///
/// ```no_run
/// use inkwell::context::Context;
/// use inkwell::OptimizationLevel::Aggressive;
/// use inkwell::passes::{PassManager, PassManagerBuilder};
///
/// let context = Context::create();
/// let module = context.create_module("mod");
/// let pass_manager_builder = PassManagerBuilder::create();
///
/// pass_manager_builder.set_optimization_level(Aggressive);
///
/// let fpm = PassManager::create(&module);
///
/// pass_manager_builder.populate_function_pass_manager(&fpm);
/// ```
pub fn populate_function_pass_manager(&self, pass_manager: &PassManager<FunctionValue>) {
unsafe {
LLVMPassManagerBuilderPopulateFunctionPassManager(self.pass_manager_builder, pass_manager.pass_manager)
}
}
/// Populates a PassManager<Module> with the expectation of whole module
/// transformations.
///
/// # Example
///
/// ```no_run
/// use inkwell::OptimizationLevel::Aggressive;
/// use inkwell::passes::{PassManager, PassManagerBuilder};
/// use inkwell::targets::{InitializationConfig, Target};
///
/// let config = InitializationConfig::default();
/// Target::initialize_native(&config).unwrap();
/// let pass_manager_builder = PassManagerBuilder::create();
///
/// pass_manager_builder.set_optimization_level(Aggressive);
///
/// let fpm = PassManager::create(());
///
/// pass_manager_builder.populate_module_pass_manager(&fpm);
/// ```
pub fn populate_module_pass_manager(&self, pass_manager: &PassManager<Module>) {
unsafe { LLVMPassManagerBuilderPopulateModulePassManager(self.pass_manager_builder, pass_manager.pass_manager) }
}
/// Populates a PassManager<Module> with the expectation of link time
/// optimization transformations.
///
/// # Example
///
/// ```no_run
/// use inkwell::OptimizationLevel::Aggressive;
/// use inkwell::passes::{PassManager, PassManagerBuilder};
/// use inkwell::targets::{InitializationConfig, Target};
///
/// let config = InitializationConfig::default();
/// Target::initialize_native(&config).unwrap();
/// let pass_manager_builder = PassManagerBuilder::create();
///
/// pass_manager_builder.set_optimization_level(Aggressive);
///
/// let lpm = PassManager::create(());
///
/// pass_manager_builder.populate_lto_pass_manager(&lpm, false, false);
/// ```
#[llvm_versions(4.0..=14.0)]
pub fn populate_lto_pass_manager(&self, pass_manager: &PassManager<Module>, internalize: bool, run_inliner: bool) {
use llvm_sys::transforms::pass_manager_builder::LLVMPassManagerBuilderPopulateLTOPassManager;
unsafe {
LLVMPassManagerBuilderPopulateLTOPassManager(
self.pass_manager_builder,
pass_manager.pass_manager,
internalize as i32,
run_inliner as i32,
)
}
}
}
#[llvm_versions(4.0..=16.0)]
impl Drop for PassManagerBuilder {
fn drop(&mut self) {
unsafe { LLVMPassManagerBuilderDispose(self.pass_manager_builder) }
}
}
// This is an ugly privacy hack so that PassManagerSubType can stay private
// to this module and so that super traits using this trait will be not be
// implementable outside this library
pub trait PassManagerSubType {
type Input;
unsafe fn create<I: Borrow<Self::Input>>(input: I) -> LLVMPassManagerRef;
unsafe fn run_in_pass_manager(&self, pass_manager: &PassManager<Self>) -> bool
where
Self: Sized;
}
impl PassManagerSubType for Module<'_> {
type Input = ();
unsafe fn create<I: Borrow<Self::Input>>(_: I) -> LLVMPassManagerRef {
LLVMCreatePassManager()
}
unsafe fn run_in_pass_manager(&self, pass_manager: &PassManager<Self>) -> bool {
LLVMRunPassManager(pass_manager.pass_manager, self.module.get()) == 1
}
}
// With GATs https://github.com/rust-lang/rust/issues/44265 this could be
// type Input<'a> = &'a Module;
impl<'ctx> PassManagerSubType for FunctionValue<'ctx> {
type Input = Module<'ctx>;
unsafe fn create<I: Borrow<Self::Input>>(input: I) -> LLVMPassManagerRef {
LLVMCreateFunctionPassManagerForModule(input.borrow().module.get())
}
unsafe fn run_in_pass_manager(&self, pass_manager: &PassManager<Self>) -> bool {
LLVMRunFunctionPassManager(pass_manager.pass_manager, self.as_value_ref()) == 1
}
}
// SubTypes: PassManager<Module>, PassManager<FunctionValue>
/// A manager for running optimization and simplification passes. Much of the
/// documentation for specific passes is directly from the [LLVM
/// documentation](https://llvm.org/docs/Passes.html).
#[derive(Debug)]
pub struct PassManager<T> {
pub(crate) pass_manager: LLVMPassManagerRef,
sub_type: PhantomData<T>,
}
impl PassManager<FunctionValue<'_>> {
/// Acquires the underlying raw pointer belonging to this `PassManager<T>` type.
pub fn as_mut_ptr(&self) -> LLVMPassManagerRef {
self.pass_manager
}
// return true means some pass modified the module, not an error occurred
pub fn initialize(&self) -> bool {
unsafe { LLVMInitializeFunctionPassManager(self.pass_manager) == 1 }
}
pub fn finalize(&self) -> bool {
unsafe { LLVMFinalizeFunctionPassManager(self.pass_manager) == 1 }
}
}
impl<T: PassManagerSubType> PassManager<T> {
pub unsafe fn new(pass_manager: LLVMPassManagerRef) -> Self {
assert!(!pass_manager.is_null());
PassManager {
pass_manager,
sub_type: PhantomData,
}
}
pub fn create<I: Borrow<T::Input>>(input: I) -> PassManager<T> {
let pass_manager = unsafe { T::create(input) };
unsafe { PassManager::new(pass_manager) }
}
/// This method returns true if any of the passes modified the function or module
/// and false otherwise.
pub fn run_on(&self, input: &T) -> bool {
unsafe { input.run_in_pass_manager(self) }
}
/// This pass promotes "by reference" arguments to be "by value" arguments.
/// In practice, this means looking for internal functions that have pointer
/// arguments. If it can prove, through the use of alias analysis, that an
/// argument is only loaded, then it can pass the value into the function
/// instead of the address of the value. This can cause recursive simplification
/// of code and lead to the elimination of allocas (especially in C++ template
/// code like the STL).
///
/// This pass also handles aggregate arguments that are passed into a function,
/// scalarizing them if the elements of the aggregate are only loaded. Note that
/// it refuses to scalarize aggregates which would require passing in more than
/// three operands to the function, because passing thousands of operands for a
/// large array or structure is unprofitable!
///
/// Note that this transformation could also be done for arguments that are
/// only stored to (returning the value instead), but does not currently.
/// This case would be best handled when and if LLVM starts supporting multiple
/// return values from functions.
#[llvm_versions(4.0..=14.0)]
pub fn add_argument_promotion_pass(&self) {
use llvm_sys::transforms::ipo::LLVMAddArgumentPromotionPass;
unsafe { LLVMAddArgumentPromotionPass(self.pass_manager) }
}
/// Merges duplicate global constants together into a single constant that is
/// shared. This is useful because some passes (i.e., TraceValues) insert a lot
/// of string constants into the program, regardless of whether or not an existing
/// string is available.
#[llvm_versions(4.0..=16.0)]
pub fn add_constant_merge_pass(&self) {
unsafe { LLVMAddConstantMergePass(self.pass_manager) }
}
/// Discovers identical functions and collapses them.
#[llvm_versions(10.0..=16.0)]
pub fn add_merge_functions_pass(&self) {
unsafe { LLVMAddMergeFunctionsPass(self.pass_manager) }
}
/// This pass deletes dead arguments from internal functions. Dead argument
/// elimination removes arguments which are directly dead, as well as arguments
/// only passed into function calls as dead arguments of other functions. This
/// pass also deletes dead arguments in a similar way.
///
/// This pass is often useful as a cleanup pass to run after aggressive
/// interprocedural passes, which add possibly-dead arguments.
#[llvm_versions(4.0..=16.0)]
pub fn add_dead_arg_elimination_pass(&self) {
unsafe { LLVMAddDeadArgEliminationPass(self.pass_manager) }
}
/// A simple interprocedural pass which walks the call-graph, looking for
/// functions which do not access or only read non-local memory, and marking
/// them readnone/readonly. In addition, it marks function arguments (of
/// pointer type) “nocapture” if a call to the function does not create
/// any copies of the pointer value that outlive the call. This more or
/// less means that the pointer is only dereferenced, and not returned
/// from the function or stored in a global. This pass is implemented
/// as a bottom-up traversal of the call-graph.
#[llvm_versions(4.0..=16.0)]
pub fn add_function_attrs_pass(&self) {
unsafe { LLVMAddFunctionAttrsPass(self.pass_manager) }
}
/// Bottom-up inlining of functions into callees.
#[llvm_versions(4.0..=16.0)]
pub fn add_function_inlining_pass(&self) {
unsafe { LLVMAddFunctionInliningPass(self.pass_manager) }
}
/// A custom inliner that handles only functions that are marked as “always inline”.
#[llvm_versions(4.0..=16.0)]
pub fn add_always_inliner_pass(&self) {
unsafe { LLVMAddAlwaysInlinerPass(self.pass_manager) }
}
/// This transform is designed to eliminate unreachable internal
/// globals from the program. It uses an aggressive algorithm,
/// searching out globals that are known to be alive. After it
/// finds all of the globals which are needed, it deletes
/// whatever is left over. This allows it to delete recursive
/// chunks of the program which are unreachable.
#[llvm_versions(4.0..=16.0)]
pub fn add_global_dce_pass(&self) {
unsafe { LLVMAddGlobalDCEPass(self.pass_manager) }
}
/// This pass transforms simple global variables that never have
/// their address taken. If obviously true, it marks read/write
/// globals as constant, deletes variables only stored to, etc.
#[llvm_versions(4.0..=16.0)]
pub fn add_global_optimizer_pass(&self) {
unsafe { LLVMAddGlobalOptimizerPass(self.pass_manager) }
}
/// This pass implements an extremely simple interprocedural
/// constant propagation pass. It could certainly be improved
/// in many different ways, like using a worklist. This pass
/// makes arguments dead, but does not remove them. The existing
/// dead argument elimination pass should be run after this to
/// clean up the mess.
///
/// In LLVM 12 and later, this instruction is replaced by the
/// [`add_instruction_simplify_pass`].
#[llvm_versions(4.0..=11.0)]
pub fn add_ip_constant_propagation_pass(&self) {
unsafe { LLVMAddIPConstantPropagationPass(self.pass_manager) }
}
/// This file implements a simple interprocedural pass which
/// walks the call-graph, turning invoke instructions into
/// call instructions if and only if the callee cannot throw
/// an exception. It implements this as a bottom-up traversal
/// of the call-graph.
#[llvm_versions(4.0..=15.0)]
pub fn add_prune_eh_pass(&self) {
unsafe { LLVMAddPruneEHPass(self.pass_manager) }
}
/// An interprocedural variant of [Sparse Conditional Constant
/// Propagation](https://llvm.org/docs/Passes.html#passes-sccp).
#[llvm_versions(4.0..=16.0)]
pub fn add_ipsccp_pass(&self) {
unsafe { LLVMAddIPSCCPPass(self.pass_manager) }
}
/// This pass loops over all of the functions in the input module,
/// looking for a main function. If a main function is found, all
/// other functions and all global variables with initializers are
/// marked as internal.
#[llvm_versions(4.0..=16.0)]
pub fn add_internalize_pass(&self, all_but_main: bool) {
unsafe { LLVMAddInternalizePass(self.pass_manager, all_but_main as u32) }
}
/// This pass loops over all of the functions in the input module,
/// looking for dead declarations and removes them. Dead declarations
/// are declarations of functions for which no implementation is available
/// (i.e., declarations for unused library functions).
#[llvm_versions(4.0..=16.0)]
pub fn add_strip_dead_prototypes_pass(&self) {
unsafe { LLVMAddStripDeadPrototypesPass(self.pass_manager) }
}
/// Performs code stripping. This transformation can delete:
///
/// * Names for virtual registers
/// * Symbols for internal globals and functions
/// * Debug information
///
/// Note that this transformation makes code much less readable,
/// so it should only be used in situations where the strip utility
/// would be used, such as reducing code size or making it harder
/// to reverse engineer code.
#[llvm_versions(4.0..=16.0)]
pub fn add_strip_symbol_pass(&self) {
unsafe { LLVMAddStripSymbolsPass(self.pass_manager) }
}
/// This pass combines instructions inside basic blocks to form
/// vector instructions. It iterates over each basic block,
/// attempting to pair compatible instructions, repeating this
/// process until no additional pairs are selected for vectorization.
/// When the outputs of some pair of compatible instructions are
/// used as inputs by some other pair of compatible instructions,
/// those pairs are part of a potential vectorization chain.
/// Instruction pairs are only fused into vector instructions when
/// they are part of a chain longer than some threshold length.
/// Moreover, the pass attempts to find the best possible chain
/// for each pair of compatible instructions. These heuristics
/// are intended to prevent vectorization in cases where it would
/// not yield a performance increase of the resulting code.
#[cfg(feature = "llvm4-0")]
pub fn add_bb_vectorize_pass(&self) {
use llvm_sys::transforms::vectorize::LLVMAddBBVectorizePass;
unsafe { LLVMAddBBVectorizePass(self.pass_manager) }
}
/// No LLVM documentation is available at this time.
#[llvm_versions(4.0..=16.0)]
pub fn add_loop_vectorize_pass(&self) {
unsafe { LLVMAddLoopVectorizePass(self.pass_manager) }
}
/// No LLVM documentation is available at this time.
#[llvm_versions(4.0..=16.0)]
pub fn add_slp_vectorize_pass(&self) {
unsafe { LLVMAddSLPVectorizePass(self.pass_manager) }
}
/// ADCE aggressively tries to eliminate code. This pass is similar
/// to [DCE](https://llvm.org/docs/Passes.html#passes-dce) but it
/// assumes that values are dead until proven otherwise. This is
/// similar to [SCCP](https://llvm.org/docs/Passes.html#passes-sccp),
/// except applied to the liveness of values.
#[llvm_versions(4.0..=16.0)]
pub fn add_aggressive_dce_pass(&self) {
unsafe { LLVMAddAggressiveDCEPass(self.pass_manager) }
}
/// No LLVM documentation is available at this time.
#[llvm_versions(4.0..=16.0)]
pub fn add_bit_tracking_dce_pass(&self) {
unsafe { LLVMAddBitTrackingDCEPass(self.pass_manager) }
}
/// No LLVM documentation is available at this time.
#[llvm_versions(4.0..=16.0)]
pub fn add_alignment_from_assumptions_pass(&self) {
unsafe { LLVMAddAlignmentFromAssumptionsPass(self.pass_manager) }
}
/// Performs dead code elimination and basic block merging. Specifically:
///
/// * Removes basic blocks with no predecessors.
/// * Merges a basic block into its predecessor if there is only one and the predecessor only has one successor.
/// * Eliminates PHI nodes for basic blocks with a single predecessor.
/// * Eliminates a basic block that only contains an unconditional branch.
#[llvm_versions(4.0..=16.0)]
pub fn add_cfg_simplification_pass(&self) {
unsafe { LLVMAddCFGSimplificationPass(self.pass_manager) }
}
/// A trivial dead store elimination that only considers basic-block local redundant stores.
#[llvm_versions(4.0..=16.0)]
pub fn add_dead_store_elimination_pass(&self) {
unsafe { LLVMAddDeadStoreEliminationPass(self.pass_manager) }
}
/// No LLVM documentation is available at this time.
#[llvm_versions(4.0..=16.0)]
pub fn add_scalarizer_pass(&self) {
unsafe { LLVMAddScalarizerPass(self.pass_manager) }
}
/// No LLVM documentation is available at this time.
#[llvm_versions(4.0..=16.0)]
pub fn add_merged_load_store_motion_pass(&self) {
unsafe { LLVMAddMergedLoadStoreMotionPass(self.pass_manager) }
}
/// This pass performs global value numbering to eliminate
/// fully and partially redundant instructions. It also
/// performs redundant load elimination.
#[llvm_versions(4.0..=16.0)]
pub fn add_gvn_pass(&self) {
unsafe { LLVMAddGVNPass(self.pass_manager) }
}
/// This pass performs global value numbering to eliminate
/// fully and partially redundant instructions. It also
/// performs redundant load elimination.
// REVIEW: Is `LLVMAddGVNPass` deprecated? Should we just seamlessly replace
// the old one with this one in 4.0+?
#[llvm_versions(4.0..=16.0)]
pub fn add_new_gvn_pass(&self) {
use llvm_sys::transforms::scalar::LLVMAddNewGVNPass;
unsafe { LLVMAddNewGVNPass(self.pass_manager) }
}
/// This transformation analyzes and transforms the induction variables (and
/// computations derived from them) into simpler forms suitable for subsequent
/// analysis and transformation.
///
/// This transformation makes the following changes to each loop with an
/// identifiable induction variable:
///
/// * All loops are transformed to have a single canonical induction variable
/// which starts at zero and steps by one.
///
/// * The canonical induction variable is guaranteed to be the first PHI node
/// in the loop header block.
///
/// * Any pointer arithmetic recurrences are raised to use array subscripts.
///
/// If the trip count of a loop is computable, this pass also makes the
/// following changes:
///
/// * The exit condition for the loop is canonicalized to compare the induction
/// value against the exit value. This turns loops like:
///
/// ```c
/// for (i = 7; i*i < 1000; ++i)
/// ```
/// into
/// ```c
/// for (i = 0; i != 25; ++i)
/// ```
///
/// * Any use outside of the loop of an expression derived from the indvar is
/// changed to compute the derived value outside of the loop, eliminating the
/// dependence on the exit value of the induction variable. If the only purpose
/// of the loop is to compute the exit value of some derived expression, this
/// transformation will make the loop dead.
///
/// This transformation should be followed by strength reduction after all of
/// the desired loop transformations have been performed. Additionally, on
/// targets where it is profitable, the loop could be transformed to count
/// down to zero (the "do loop" optimization).
#[llvm_versions(4.0..=16.0)]
pub fn add_ind_var_simplify_pass(&self) {
unsafe { LLVMAddIndVarSimplifyPass(self.pass_manager) }
}
/// Combine instructions to form fewer, simple instructions. This pass
/// does not modify the CFG. This pass is where algebraic simplification happens.
///
/// This pass combines things like:
///
/// ```c
/// %Y = add i32 %X, 1
/// %Z = add i32 %Y, 1
/// ```
/// into:
/// ```c
/// %Z = add i32 %X, 2
/// ```
///
/// This is a simple worklist driven algorithm.
///
/// This pass guarantees that the following canonicalization are performed
/// on the program:
///
/// 1. If a binary operator has a constant operand, it is moved to the
/// right-hand side.
///
/// 2. Bitwise operators with constant operands are always grouped so that
/// shifts are performed first, then ors, then ands, then xors.
///
/// 3. Compare instructions are converted from <, >, ≤, or ≥ to = or ≠ if possible.
///
/// 4. All cmp instructions on boolean values are replaced with logical operations.
///
/// 5. add X, X is represented as mul X, 2 ⇒ shl X, 1
///
/// 6. Multiplies with a constant power-of-two argument are transformed into shifts.
///
/// 7. ... etc.
///
/// This pass can also simplify calls to specific well-known function calls
/// (e.g. runtime library functions). For example, a call exit(3) that occurs within
/// the main() function can be transformed into simply return 3. Whether or not library
/// calls are simplified is controlled by the [-functionattrs](https://llvm.org/docs/Passes.html#passes-functionattrs)
/// pass and LLVM’s knowledge of library calls on different targets.
#[llvm_versions(4.0..=16.0)]
pub fn add_instruction_combining_pass(&self) {
unsafe { LLVMAddInstructionCombiningPass(self.pass_manager) }
}
/// Jump threading tries to find distinct threads of control flow
/// running through a basic block. This pass looks at blocks that
/// have multiple predecessors and multiple successors. If one or
/// more of the predecessors of the block can be proven to always
/// cause a jump to one of the successors, we forward the edge from
/// the predecessor to the successor by duplicating the contents of
/// this block.
///
/// An example of when this can occur is code like this:
///
/// ```c
/// if () { ...
/// X = 4;
/// }
/// if (X < 3) {
/// ```
///
/// In this case, the unconditional branch at the end of the first
/// if can be revectored to the false side of the second if.
#[llvm_versions(4.0..=16.0)]
pub fn add_jump_threading_pass(&self) {
unsafe { LLVMAddJumpThreadingPass(self.pass_manager) }
}
/// This pass performs loop invariant code motion,
/// attempting to remove as much code from the body of
/// a loop as possible. It does this by either hoisting
/// code into the preheader block, or by sinking code to
/// the exit blocks if it is safe. This pass also promotes
/// must-aliased memory locations in the loop to live in
/// registers, thus hoisting and sinking “invariant” loads
/// and stores.
///
/// This pass uses alias analysis for two purposes:
///
/// 1. Moving loop invariant loads and calls out of loops.
/// If we can determine that a load or call inside of a
/// loop never aliases anything stored to, we can hoist
/// it or sink it like any other instruction.
///
/// 2. Scalar Promotion of Memory. If there is a store
/// instruction inside of the loop, we try to move the
/// store to happen AFTER the loop instead of inside of
/// the loop. This can only happen if a few conditions
/// are true:
///
/// 1. The pointer stored through is loop invariant.
///
/// 2. There are no stores or loads in the loop
/// which may alias the pointer. There are no calls in
/// the loop which mod/ref the pointer.
///
/// If these conditions are true, we can promote the loads
/// and stores in the loop of the pointer to use a temporary
/// alloca'd variable. We then use the mem2reg functionality
/// to construct the appropriate SSA form for the variable.
#[llvm_versions(4.0..=16.0)]
pub fn add_licm_pass(&self) {
unsafe { LLVMAddLICMPass(self.pass_manager) }
}
/// This file implements the Dead Loop Deletion Pass.
/// This pass is responsible for eliminating loops with
/// non-infinite computable trip counts that have no side
/// effects or volatile instructions, and do not contribute
/// to the computation of the function’s return value.
#[llvm_versions(4.0..=16.0)]
pub fn add_loop_deletion_pass(&self) {
unsafe { LLVMAddLoopDeletionPass(self.pass_manager) }
}
/// No LLVM documentation is available at this time.
#[llvm_versions(4.0..=16.0)]
pub fn add_loop_idiom_pass(&self) {
unsafe { LLVMAddLoopIdiomPass(self.pass_manager) }
}
/// A simple loop rotation transformation.
#[llvm_versions(4.0..=16.0)]
pub fn add_loop_rotate_pass(&self) {
unsafe { LLVMAddLoopRotatePass(self.pass_manager) }
}
/// No LLVM documentation is available at this time.
#[llvm_versions(4.0..=16.0)]
pub fn add_loop_reroll_pass(&self) {
unsafe { LLVMAddLoopRerollPass(self.pass_manager) }
}
/// This pass implements a simple loop unroller.
/// It works best when loops have been canonicalized
/// by the [indvars](https://llvm.org/docs/Passes.html#passes-indvars)
/// pass, allowing it to determine the trip counts
/// of loops easily.
#[llvm_versions(4.0..=16.0)]
pub fn add_loop_unroll_pass(&self) {
unsafe { LLVMAddLoopUnrollPass(self.pass_manager) }
}
/// This pass transforms loops that contain branches on
/// loop-invariant conditions to have multiple loops.
/// For example, it turns the left into the right code:
///
/// ```c
/// for (...) if (lic)
/// A for (...)
/// if (lic) A; B; C
/// B else
/// C for (...)
/// A; C
/// ```
///
/// This can increase the size of the code exponentially
/// (doubling it every time a loop is unswitched) so we
/// only unswitch if the resultant code will be smaller
/// than a threshold.
///
/// This pass expects [LICM](https://llvm.org/docs/Passes.html#passes-licm)
/// to be run before it to hoist invariant conditions
/// out of the loop, to make the unswitching opportunity
/// obvious.
#[llvm_versions(4.0..=14.0)]
pub fn add_loop_unswitch_pass(&self) {
use llvm_sys::transforms::scalar::LLVMAddLoopUnswitchPass;
unsafe { LLVMAddLoopUnswitchPass(self.pass_manager) }
}
/// This pass performs various transformations related
/// to eliminating memcpy calls, or transforming sets
/// of stores into memsets.
#[llvm_versions(4.0..=16.0)]
pub fn add_memcpy_optimize_pass(&self) {
unsafe { LLVMAddMemCpyOptPass(self.pass_manager) }
}
/// This pass performs partial inlining, typically by inlining
/// an if statement that surrounds the body of the function.
#[llvm_versions(4.0..=16.0)]
pub fn add_partially_inline_lib_calls_pass(&self) {
unsafe { LLVMAddPartiallyInlineLibCallsPass(self.pass_manager) }
}
/// Rewrites switch instructions with a sequence of branches,
/// which allows targets to get away with not implementing the
/// switch instruction until it is convenient.
#[llvm_versions(4.0..=16.0)]
pub fn add_lower_switch_pass(&self) {
#[llvm_versions(4.0..=6.0)]
use llvm_sys::transforms::scalar::LLVMAddLowerSwitchPass;
#[llvm_versions(7.0..=16.0)]
use llvm_sys::transforms::util::LLVMAddLowerSwitchPass;
unsafe { LLVMAddLowerSwitchPass(self.pass_manager) }
}
/// This file promotes memory references to be register references.
/// It promotes alloca instructions which only have loads and stores
/// as uses. An alloca is transformed by using dominator frontiers
/// to place phi nodes, then traversing the function in depth-first
/// order to rewrite loads and stores as appropriate. This is just
/// the standard SSA construction algorithm to construct "pruned" SSA form.
#[llvm_versions(4.0..=16.0)]
pub fn add_promote_memory_to_register_pass(&self) {
#[llvm_versions(4.0..=6.0)]
use llvm_sys::transforms::scalar::LLVMAddPromoteMemoryToRegisterPass;
#[llvm_versions(7.0..=16.0)]
use llvm_sys::transforms::util::LLVMAddPromoteMemoryToRegisterPass;
unsafe { LLVMAddPromoteMemoryToRegisterPass(self.pass_manager) }
}
/// This pass reassociates commutative expressions in an order that is designed
/// to promote better constant propagation, GCSE, LICM, PRE, etc.
///
/// For example: 4 + (x + 5) ⇒ x + (4 + 5)
///
/// In the implementation of this algorithm, constants are assigned rank = 0,
/// function arguments are rank = 1, and other values are assigned ranks
/// corresponding to the reverse post order traversal of current function
/// (starting at 2), which effectively gives values in deep loops higher
/// rank than values not in loops.
#[llvm_versions(4.0..=16.0)]
pub fn add_reassociate_pass(&self) {
unsafe { LLVMAddReassociatePass(self.pass_manager) }
}
/// Sparse conditional constant propagation and merging, which can
/// be summarized as:
///
/// * Assumes values are constant unless proven otherwise
/// * Assumes BasicBlocks are dead unless proven otherwise
/// * Proves values to be constant, and replaces them with constants
/// * Proves conditional branches to be unconditional
///
/// Note that this pass has a habit of making definitions be dead.
/// It is a good idea to run a DCE pass sometime after running this pass.
#[llvm_versions(4.0..=16.0)]
pub fn add_sccp_pass(&self) {
unsafe { LLVMAddSCCPPass(self.pass_manager) }
}
/// No LLVM documentation is available at this time.
#[llvm_versions(4.0..=16.0)]
pub fn add_scalar_repl_aggregates_pass(&self) {
unsafe { LLVMAddScalarReplAggregatesPass(self.pass_manager) }
}
/// The well-known scalar replacement of aggregates transformation.
/// This transform breaks up alloca instructions of aggregate type
/// (structure or array) into individual alloca instructions for each
/// member if possible. Then, if possible, it transforms the individual
/// alloca instructions into nice clean scalar SSA form.
#[llvm_versions(4.0..=16.0)]
pub fn add_scalar_repl_aggregates_pass_ssa(&self) {
unsafe { LLVMAddScalarReplAggregatesPassSSA(self.pass_manager) }
}
/// No LLVM documentation is available at this time.
#[llvm_versions(4.0..=16.0)]
pub fn add_scalar_repl_aggregates_pass_with_threshold(&self, threshold: i32) {
unsafe { LLVMAddScalarReplAggregatesPassWithThreshold(self.pass_manager, threshold) }
}
/// No LLVM documentation is available at this time.
#[llvm_versions(4.0..=16.0)]
pub fn add_simplify_lib_calls_pass(&self) {
unsafe { LLVMAddSimplifyLibCallsPass(self.pass_manager) }
}
/// This file transforms calls of the current function (self recursion) followed
/// by a return instruction with a branch to the entry of the function, creating
/// a loop. This pass also implements the following extensions to the basic algorithm:
///
/// 1. Trivial instructions between the call and return do not prevent the
/// transformation from taking place, though currently the analysis cannot support
/// moving any really useful instructions (only dead ones).
///
/// 2. This pass transforms functions that are prevented from being tail
/// recursive by an associative expression to use an accumulator variable, thus
/// compiling the typical naive factorial or fib implementation into efficient code.
///
/// 3. TRE is performed if the function returns void, if the return returns
/// the result returned by the call, or if the function returns a run-time constant
/// on all exits from the function. It is possible, though unlikely, that the return
/// returns something else (like constant 0), and can still be TRE’d. It can be
/// TRE'd if all other return instructions in the function return the exact same value.
///
/// 4. If it can prove that callees do not access theier caller stack frame,
/// they are marked as eligible for tail call elimination (by the code generator).
#[llvm_versions(4.0..=16.0)]
pub fn add_tail_call_elimination_pass(&self) {
unsafe { LLVMAddTailCallEliminationPass(self.pass_manager) }
}
/// This pass implements constant propagation and merging. It looks for instructions
/// involving only constant operands and replaces them with a constant value instead
/// of an instruction. For example:
///
/// ```ir
/// add i32 1, 2
/// ```
///
/// becomes
///
/// ```ir
/// i32 3
/// ```
///
/// NOTE: this pass has a habit of making definitions be dead. It is a good idea to
/// run a Dead Instruction Elimination pass sometime after running this pass.
///
/// In LLVM 12 and later, this instruction is replaced by the
/// [`add_instruction_simplify_pass`].
#[llvm_versions(4.0..=11.0)]
pub fn add_constant_propagation_pass(&self) {
unsafe { LLVMAddConstantPropagationPass(self.pass_manager) }
}
/// This pass implements constant propagation and merging. It looks for instructions
/// involving only constant operands and replaces them with a constant value instead
/// of an instruction. For example:
///
/// ```ir
/// add i32 1, 2
/// ```
///
/// becomes
///
/// ```ir
/// i32 3
/// ```
///
/// NOTE: this pass has a habit of making definitions be dead. It is a good idea to
/// run a Dead Instruction Elimination pass sometime after running this pass.
#[llvm_versions(12.0..=16.0)]
pub fn add_instruction_simplify_pass(&self) {
unsafe { LLVMAddInstructionSimplifyPass(self.pass_manager) }
}
/// This file promotes memory references to be register references.
/// It promotes alloca instructions which only have loads and stores
/// as uses. An alloca is transformed by using dominator frontiers to
/// place phi nodes, then traversing the function in depth-first order to
/// rewrite loads and stores as appropriate. This is just the standard SSA
/// construction algorithm to construct “pruned” SSA form.
#[llvm_versions(4.0..=16.0)]
pub fn add_demote_memory_to_register_pass(&self) {
unsafe { LLVMAddDemoteMemoryToRegisterPass(self.pass_manager) }
}
/// Verifies an LLVM IR code. This is useful to run after an optimization
/// which is undergoing testing. Note that llvm-as verifies its input before
/// emitting bitcode, and also that malformed bitcode is likely to make
/// LLVM crash. All language front-ends are therefore encouraged to verify
/// their output before performing optimizing transformations.
///
/// 1. Both of a binary operator’s parameters are of the same type.
///
/// 2. Verify that the indices of mem access instructions match other operands.
///
/// 3. Verify that arithmetic and other things are only performed on
/// first-class types. Verify that shifts and logicals only happen on
/// integrals f.e.
///
/// 4. All of the constants in a switch statement are of the correct type.
///
/// 5. The code is in valid SSA form.
///
/// 6. It is illegal to put a label into any other type (like a structure)
/// or to return one.
///
/// 7. Only phi nodes can be self referential: %x = add i32 %x, %x is invalid.
///
/// 8. PHI nodes must have an entry for each predecessor, with no extras.
///
/// 9. PHI nodes must be the first thing in a basic block, all grouped together.
///
/// 10. PHI nodes must have at least one entry.
///
/// 11. All basic blocks should only end with terminator insts, not contain them.
///
/// 12. The entry node to a function must not have predecessors.
///
/// 13. All Instructions must be embedded into a basic block.
///
/// 14. Functions cannot take a void-typed parameter.
///
/// 15. Verify that a function’s argument list agrees with its declared type.
///
/// 16. It is illegal to specify a name for a void value.
///
/// 17. It is illegal to have an internal global value with no initializer.
///
/// 18. It is illegal to have a ret instruction that returns a value that does
/// not agree with the function return value type.
///
/// 19. Function call argument types match the function prototype.
///
/// 20. All other things that are tested by asserts spread about the code.
///
/// Note that this does not provide full security verification (like Java), but instead just tries to ensure that code is well-formed.
#[llvm_versions(4.0..=16.0)]
pub fn add_verifier_pass(&self) {
unsafe { LLVMAddVerifierPass(self.pass_manager) }
}
/// No LLVM documentation is available at this time.
#[llvm_versions(4.0..=16.0)]
pub fn add_correlated_value_propagation_pass(&self) {
unsafe { LLVMAddCorrelatedValuePropagationPass(self.pass_manager) }
}
/// No LLVM documentation is available at this time.
#[llvm_versions(4.0..=16.0)]
pub fn add_early_cse_pass(&self) {
unsafe { LLVMAddEarlyCSEPass(self.pass_manager) }
}
#[llvm_versions(4.0..=16.0)]
/// No LLVM documentation is available at this time.
pub fn add_early_cse_mem_ssa_pass(&self) {
use llvm_sys::transforms::scalar::LLVMAddEarlyCSEMemSSAPass;
unsafe { LLVMAddEarlyCSEMemSSAPass(self.pass_manager) }
}
/// No LLVM documentation is available at this time.
#[llvm_versions(4.0..=16.0)]
pub fn add_lower_expect_intrinsic_pass(&self) {
unsafe { LLVMAddLowerExpectIntrinsicPass(self.pass_manager) }
}
/// No LLVM documentation is available at this time.
#[llvm_versions(4.0..=16.0)]
pub fn add_type_based_alias_analysis_pass(&self) {
unsafe { LLVMAddTypeBasedAliasAnalysisPass(self.pass_manager) }
}
/// No LLVM documentation is available at this time.
#[llvm_versions(4.0..=16.0)]
pub fn add_scoped_no_alias_aa_pass(&self) {
unsafe { LLVMAddScopedNoAliasAAPass(self.pass_manager) }
}
/// A basic alias analysis pass that implements identities
/// (two different globals cannot alias, etc), but does no
/// stateful analysis.
#[llvm_versions(4.0..=16.0)]
pub fn add_basic_alias_analysis_pass(&self) {
unsafe { LLVMAddBasicAliasAnalysisPass(self.pass_manager) }
}
#[llvm_versions(7.0..=15.0)]
pub fn add_aggressive_inst_combiner_pass(&self) {
#[cfg(not(feature = "llvm7-0"))]
use llvm_sys::transforms::aggressive_instcombine::LLVMAddAggressiveInstCombinerPass;
#[cfg(feature = "llvm7-0")]
use llvm_sys::transforms::scalar::LLVMAddAggressiveInstCombinerPass;
unsafe { LLVMAddAggressiveInstCombinerPass(self.pass_manager) }
}
#[llvm_versions(7.0..=16.0)]
pub fn add_loop_unroll_and_jam_pass(&self) {
use llvm_sys::transforms::scalar::LLVMAddLoopUnrollAndJamPass;
unsafe { LLVMAddLoopUnrollAndJamPass(self.pass_manager) }
}
#[llvm_versions(8.0..15.0)]
pub fn add_coroutine_early_pass(&self) {
use llvm_sys::transforms::coroutines::LLVMAddCoroEarlyPass;
unsafe { LLVMAddCoroEarlyPass(self.pass_manager) }
}
#[llvm_versions(8.0..15.0)]
pub fn add_coroutine_split_pass(&self) {
use llvm_sys::transforms::coroutines::LLVMAddCoroSplitPass;
unsafe { LLVMAddCoroSplitPass(self.pass_manager) }
}
#[llvm_versions(8.0..15.0)]
pub fn add_coroutine_elide_pass(&self) {
use llvm_sys::transforms::coroutines::LLVMAddCoroElidePass;
unsafe { LLVMAddCoroElidePass(self.pass_manager) }
}
#[llvm_versions(8.0..15.0)]
pub fn add_coroutine_cleanup_pass(&self) {
use llvm_sys::transforms::coroutines::LLVMAddCoroCleanupPass;
unsafe { LLVMAddCoroCleanupPass(self.pass_manager) }
}
}
impl<T> Drop for PassManager<T> {
fn drop(&mut self) {
unsafe { LLVMDisposePassManager(self.pass_manager) }
}
}
#[llvm_versions(4.0..=16.0)]
#[derive(Debug)]
pub struct PassRegistry {
pass_registry: LLVMPassRegistryRef,
}
#[llvm_versions(4.0..=16.0)]
impl PassRegistry {
pub unsafe fn new(pass_registry: LLVMPassRegistryRef) -> PassRegistry {
assert!(!pass_registry.is_null());
PassRegistry { pass_registry }
}
/// Acquires the underlying raw pointer belonging to this `PassRegistry` type.
pub fn as_mut_ptr(&self) -> LLVMPassRegistryRef {
self.pass_registry
}
pub fn get_global() -> PassRegistry {
let pass_registry = unsafe { LLVMGetGlobalPassRegistry() };
unsafe { PassRegistry::new(pass_registry) }
}
pub fn initialize_core(&self) {
unsafe { LLVMInitializeCore(self.pass_registry) }
}
pub fn initialize_transform_utils(&self) {
unsafe { LLVMInitializeTransformUtils(self.pass_registry) }
}
pub fn initialize_scalar_opts(&self) {
unsafe { LLVMInitializeScalarOpts(self.pass_registry) }
}
#[llvm_versions(4.0..=15.0)]
pub fn initialize_obj_carc_opts(&self) {
unsafe { LLVMInitializeObjCARCOpts(self.pass_registry) }
}
pub fn initialize_vectorization(&self) {
unsafe { LLVMInitializeVectorization(self.pass_registry) }
}
pub fn initialize_inst_combine(&self) {
unsafe { LLVMInitializeInstCombine(self.pass_registry) }
}
// Let us begin our initial public offering
pub fn initialize_ipo(&self) {
unsafe { LLVMInitializeIPO(self.pass_registry) }
}
#[llvm_versions(4.0..=15.0)]
pub fn initialize_instrumentation(&self) {
unsafe { LLVMInitializeInstrumentation(self.pass_registry) }
}
pub fn initialize_analysis(&self) {
unsafe { LLVMInitializeAnalysis(self.pass_registry) }
}
pub fn initialize_ipa(&self) {
unsafe { LLVMInitializeIPA(self.pass_registry) }
}
pub fn initialize_codegen(&self) {
unsafe { LLVMInitializeCodeGen(self.pass_registry) }
}
pub fn initialize_target(&self) {
unsafe { LLVMInitializeTarget(self.pass_registry) }
}
#[llvm_versions(7.0..=15.0)]
pub fn initialize_aggressive_inst_combiner(&self) {
use llvm_sys::initialization::LLVMInitializeAggressiveInstCombiner;
unsafe { LLVMInitializeAggressiveInstCombiner(self.pass_registry) }
}
}
#[llvm_versions(13.0..=latest)]
#[derive(Debug)]
pub struct PassBuilderOptions {
pub(crate) options_ref: LLVMPassBuilderOptionsRef,
}
#[llvm_versions(13.0..=latest)]
impl PassBuilderOptions {
/// Create a new set of options for a PassBuilder
pub fn create() -> Self {
unsafe {
PassBuilderOptions {
options_ref: LLVMCreatePassBuilderOptions(),
}
}
}
/// Acquires the underlying raw pointer belonging to this `PassBuilderOptions` type.
pub fn as_mut_ptr(&self) -> LLVMPassBuilderOptionsRef {
self.options_ref
}
///Toggle adding the VerifierPass for the PassBuilder, ensuring all functions inside the module is valid.
pub fn set_verify_each(&self, value: bool) {
unsafe {
LLVMPassBuilderOptionsSetVerifyEach(self.options_ref, value as i32);
}
}
///Toggle debug logging when running the PassBuilder.
pub fn set_debug_logging(&self, value: bool) {
unsafe {
LLVMPassBuilderOptionsSetDebugLogging(self.options_ref, value as i32);
}
}
pub fn set_loop_interleaving(&self, value: bool) {
unsafe {
LLVMPassBuilderOptionsSetLoopInterleaving(self.options_ref, value as i32);
}
}
pub fn set_loop_vectorization(&self, value: bool) {
unsafe {
LLVMPassBuilderOptionsSetLoopVectorization(self.options_ref, value as i32);
}
}
pub fn set_loop_slp_vectorization(&self, value: bool) {
unsafe {
LLVMPassBuilderOptionsSetSLPVectorization(self.options_ref, value as i32);
}
}
pub fn set_loop_unrolling(&self, value: bool) {
unsafe {
LLVMPassBuilderOptionsSetLoopUnrolling(self.options_ref, value as i32);
}
}
pub fn set_forget_all_scev_in_loop_unroll(&self, value: bool) {
unsafe {
LLVMPassBuilderOptionsSetForgetAllSCEVInLoopUnroll(self.options_ref, value as i32);
}
}
pub fn set_licm_mssa_opt_cap(&self, value: u32) {
unsafe {
LLVMPassBuilderOptionsSetLicmMssaOptCap(self.options_ref, value);
}
}
pub fn set_licm_mssa_no_acc_for_promotion_cap(&self, value: u32) {
unsafe {
LLVMPassBuilderOptionsSetLicmMssaNoAccForPromotionCap(self.options_ref, value);
}
}
pub fn set_call_graph_profile(&self, value: bool) {
unsafe {
LLVMPassBuilderOptionsSetCallGraphProfile(self.options_ref, value as i32);
}
}
pub fn set_merge_functions(&self, value: bool) {
unsafe {
LLVMPassBuilderOptionsSetMergeFunctions(self.options_ref, value as i32);
}
}
}
#[llvm_versions(13.0..=latest)]
impl Drop for PassBuilderOptions {
fn drop(&mut self) {
unsafe {
LLVMDisposePassBuilderOptions(self.options_ref);
}
}
}