1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479
/*!
Provides helpers for dealing with start state configurations in DFAs.
*/
use crate::util::{
look::LookMatcher,
search::{Anchored, Input},
wire::{self, DeserializeError, SerializeError},
};
/// The configuration used to determine a DFA's start state for a search.
///
/// A DFA has a single starting state in the typical textbook description. That
/// is, it corresponds to the set of all starting states for the NFA that built
/// it, along with their espsilon closures. In this crate, however, DFAs have
/// many possible start states due to a few factors:
///
/// * DFAs support the ability to run either anchored or unanchored searches.
/// Each type of search needs its own start state. For example, an unanchored
/// search requires starting at a state corresponding to a regex with a
/// `(?s-u:.)*?` prefix, which will match through anything.
/// * DFAs also optionally support starting an anchored search for any one
/// specific pattern. Each such pattern requires its own start state.
/// * If a look-behind assertion like `^` or `\b` is used in the regex, then
/// the DFA will need to inspect a single byte immediately before the start of
/// the search to choose the correct start state.
///
/// Indeed, this configuration precisely encapsulates all of the above factors.
/// The [`Config::anchored`] method sets which kind of anchored search to
/// perform while the [`Config::look_behind`] method provides a way to set
/// the byte that occurs immediately before the start of the search.
///
/// Generally speaking, this type is only useful when you want to run searches
/// without using an [`Input`]. In particular, an `Input` wants a haystack
/// slice, but callers may not have a contiguous sequence of bytes as a
/// haystack in all cases. This type provides a lower level of control such
/// that callers can provide their own anchored configuration and look-behind
/// byte explicitly.
///
/// # Example
///
/// This shows basic usage that permits running a search with a DFA without
/// using the `Input` abstraction.
///
/// ```
/// use regex_automata::{
/// dfa::{Automaton, dense},
/// util::start,
/// Anchored,
/// };
///
/// let dfa = dense::DFA::new(r"(?-u)\b\w+\b")?;
/// let haystack = "quartz";
///
/// let config = start::Config::new().anchored(Anchored::Yes);
/// let mut state = dfa.start_state(&config)?;
/// for &b in haystack.as_bytes().iter() {
/// state = dfa.next_state(state, b);
/// }
/// state = dfa.next_eoi_state(state);
/// assert!(dfa.is_match_state(state));
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
///
/// This example shows how to correctly run a search that doesn't begin at
/// the start of a haystack. Notice how we set the look-behind byte, and as
/// a result, the `\b` assertion does not match.
///
/// ```
/// use regex_automata::{
/// dfa::{Automaton, dense},
/// util::start,
/// Anchored,
/// };
///
/// let dfa = dense::DFA::new(r"(?-u)\b\w+\b")?;
/// let haystack = "quartz";
///
/// let config = start::Config::new()
/// .anchored(Anchored::Yes)
/// .look_behind(Some(b'q'));
/// let mut state = dfa.start_state(&config)?;
/// for &b in haystack.as_bytes().iter().skip(1) {
/// state = dfa.next_state(state, b);
/// }
/// state = dfa.next_eoi_state(state);
/// // No match!
/// assert!(!dfa.is_match_state(state));
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
///
/// If we had instead not set a look-behind byte, then the DFA would assume
/// that it was starting at the beginning of the haystack, and thus `\b` should
/// match. This in turn would result in erroneously reporting a match:
///
/// ```
/// use regex_automata::{
/// dfa::{Automaton, dense},
/// util::start,
/// Anchored,
/// };
///
/// let dfa = dense::DFA::new(r"(?-u)\b\w+\b")?;
/// let haystack = "quartz";
///
/// // Whoops, forgot the look-behind byte...
/// let config = start::Config::new().anchored(Anchored::Yes);
/// let mut state = dfa.start_state(&config)?;
/// for &b in haystack.as_bytes().iter().skip(1) {
/// state = dfa.next_state(state, b);
/// }
/// state = dfa.next_eoi_state(state);
/// // And now we get a match unexpectedly.
/// assert!(dfa.is_match_state(state));
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
#[derive(Clone, Debug)]
pub struct Config {
look_behind: Option<u8>,
anchored: Anchored,
}
impl Config {
/// Create a new default start configuration.
///
/// The default is an unanchored search that starts at the beginning of the
/// haystack.
pub fn new() -> Config {
Config { anchored: Anchored::No, look_behind: None }
}
/// A convenience routine for building a start configuration from an
/// [`Input`] for a forward search.
///
/// This automatically sets the look-behind byte to the byte immediately
/// preceding the start of the search. If the start of the search is at
/// offset `0`, then no look-behind byte is set.
pub fn from_input_forward(input: &Input<'_>) -> Config {
let look_behind = input
.start()
.checked_sub(1)
.and_then(|i| input.haystack().get(i).copied());
Config { look_behind, anchored: input.get_anchored() }
}
/// A convenience routine for building a start configuration from an
/// [`Input`] for a reverse search.
///
/// This automatically sets the look-behind byte to the byte immediately
/// following the end of the search. If the end of the search is at
/// offset `haystack.len()`, then no look-behind byte is set.
pub fn from_input_reverse(input: &Input<'_>) -> Config {
let look_behind = input.haystack().get(input.end()).copied();
Config { look_behind, anchored: input.get_anchored() }
}
/// Set the look-behind byte at the start of a search.
///
/// Unless the search is intended to logically start at the beginning of a
/// haystack, this should _always_ be set to the byte immediately preceding
/// the start of the search. If no look-behind byte is set, then the start
/// configuration will assume it is at the beginning of the haystack. For
/// example, the anchor `^` will match.
///
/// The default is that no look-behind byte is set.
pub fn look_behind(mut self, byte: Option<u8>) -> Config {
self.look_behind = byte;
self
}
/// Set the anchored mode of a search.
///
/// The default is an unanchored search.
pub fn anchored(mut self, mode: Anchored) -> Config {
self.anchored = mode;
self
}
/// Return the look-behind byte in this configuration, if one exists.
pub fn get_look_behind(&self) -> Option<u8> {
self.look_behind
}
/// Return the anchored mode in this configuration.
pub fn get_anchored(&self) -> Anchored {
self.anchored
}
}
/// A map from every possible byte value to its corresponding starting
/// configuration.
///
/// This map is used in order to lookup the start configuration for a particular
/// position in a haystack. This start configuration is then used in
/// combination with things like the anchored mode and pattern ID to fully
/// determine the start state.
///
/// Generally speaking, this map is only used for fully compiled DFAs and lazy
/// DFAs. For NFAs (including the one-pass DFA), the start state is generally
/// selected by virtue of traversing the NFA state graph. DFAs do the same
/// thing, but at build time and not search time. (Well, technically the lazy
/// DFA does it at search time, but it does enough work to cache the full
/// result of the epsilon closure that the NFA engines tend to need to do.)
#[derive(Clone)]
pub(crate) struct StartByteMap {
map: [Start; 256],
}
impl StartByteMap {
/// Create a new map from byte values to their corresponding starting
/// configurations. The map is determined, in part, by how look-around
/// assertions are matched via the matcher given.
pub(crate) fn new(lookm: &LookMatcher) -> StartByteMap {
let mut map = [Start::NonWordByte; 256];
map[usize::from(b'\n')] = Start::LineLF;
map[usize::from(b'\r')] = Start::LineCR;
map[usize::from(b'_')] = Start::WordByte;
let mut byte = b'0';
while byte <= b'9' {
map[usize::from(byte)] = Start::WordByte;
byte += 1;
}
byte = b'A';
while byte <= b'Z' {
map[usize::from(byte)] = Start::WordByte;
byte += 1;
}
byte = b'a';
while byte <= b'z' {
map[usize::from(byte)] = Start::WordByte;
byte += 1;
}
let lineterm = lookm.get_line_terminator();
// If our line terminator is normal, then it is already handled by
// the LineLF and LineCR configurations. But if it's weird, then we
// overwrite whatever was there before for that terminator with a
// special configuration. The trick here is that if the terminator
// is, say, a word byte like `a`, then callers seeing this start
// configuration need to account for that and build their DFA state as
// if it *also* came from a word byte.
if lineterm != b'\r' && lineterm != b'\n' {
map[usize::from(lineterm)] = Start::CustomLineTerminator;
}
StartByteMap { map }
}
/// Return the starting configuration for the given look-behind byte.
///
/// If no look-behind exists, callers should use `Start::Text`.
#[cfg_attr(feature = "perf-inline", inline(always))]
pub(crate) fn get(&self, byte: u8) -> Start {
self.map[usize::from(byte)]
}
/// Deserializes a byte class map from the given slice. If the slice is of
/// insufficient length or otherwise contains an impossible mapping, then
/// an error is returned. Upon success, the number of bytes read along with
/// the map are returned. The number of bytes read is always a multiple of
/// 8.
pub(crate) fn from_bytes(
slice: &[u8],
) -> Result<(StartByteMap, usize), DeserializeError> {
wire::check_slice_len(slice, 256, "start byte map")?;
let mut map = [Start::NonWordByte; 256];
for (i, &repr) in slice[..256].iter().enumerate() {
map[i] = match Start::from_usize(usize::from(repr)) {
Some(start) => start,
None => {
return Err(DeserializeError::generic(
"found invalid starting configuration",
))
}
};
}
Ok((StartByteMap { map }, 256))
}
/// Writes this map to the given byte buffer. if the given buffer is too
/// small, then an error is returned. Upon success, the total number of
/// bytes written is returned. The number of bytes written is guaranteed to
/// be a multiple of 8.
pub(crate) fn write_to(
&self,
dst: &mut [u8],
) -> Result<usize, SerializeError> {
let nwrite = self.write_to_len();
if dst.len() < nwrite {
return Err(SerializeError::buffer_too_small("start byte map"));
}
for (i, &start) in self.map.iter().enumerate() {
dst[i] = start.as_u8();
}
Ok(nwrite)
}
/// Returns the total number of bytes written by `write_to`.
pub(crate) fn write_to_len(&self) -> usize {
256
}
}
impl core::fmt::Debug for StartByteMap {
fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
use crate::util::escape::DebugByte;
write!(f, "StartByteMap{{")?;
for byte in 0..=255 {
if byte > 0 {
write!(f, ", ")?;
}
let start = self.map[usize::from(byte)];
write!(f, "{:?} => {:?}", DebugByte(byte), start)?;
}
write!(f, "}}")?;
Ok(())
}
}
/// Represents the six possible starting configurations of a DFA search.
///
/// The starting configuration is determined by inspecting the the beginning
/// of the haystack (up to 1 byte). Ultimately, this along with a pattern ID
/// (if specified) and the type of search (anchored or not) is what selects the
/// start state to use in a DFA.
///
/// As one example, if a DFA only supports unanchored searches and does not
/// support anchored searches for each pattern, then it will have at most 6
/// distinct start states. (Some start states may be reused if determinization
/// can determine that they will be equivalent.) If the DFA supports both
/// anchored and unanchored searches, then it will have a maximum of 12
/// distinct start states. Finally, if the DFA also supports anchored searches
/// for each pattern, then it can have up to `12 + (N * 6)` start states, where
/// `N` is the number of patterns.
///
/// Handling each of these starting configurations in the context of DFA
/// determinization can be *quite* tricky and subtle. But the code is small
/// and can be found at `crate::util::determinize::set_lookbehind_from_start`.
#[derive(Clone, Copy, Debug, Eq, PartialEq)]
pub(crate) enum Start {
/// This occurs when the starting position is not any of the ones below.
NonWordByte = 0,
/// This occurs when the byte immediately preceding the start of the search
/// is an ASCII word byte.
WordByte = 1,
/// This occurs when the starting position of the search corresponds to the
/// beginning of the haystack.
Text = 2,
/// This occurs when the byte immediately preceding the start of the search
/// is a line terminator. Specifically, `\n`.
LineLF = 3,
/// This occurs when the byte immediately preceding the start of the search
/// is a line terminator. Specifically, `\r`.
LineCR = 4,
/// This occurs when a custom line terminator has been set via a
/// `LookMatcher`, and when that line terminator is neither a `\r` or a
/// `\n`.
///
/// If the custom line terminator is a word byte, then this start
/// configuration is still selected. DFAs that implement word boundary
/// assertions will likely need to check whether the custom line terminator
/// is a word byte, in which case, it should behave as if the byte
/// satisfies `\b` in addition to multi-line anchors.
CustomLineTerminator = 5,
}
impl Start {
/// Return the starting state corresponding to the given integer. If no
/// starting state exists for the given integer, then None is returned.
pub(crate) fn from_usize(n: usize) -> Option<Start> {
match n {
0 => Some(Start::NonWordByte),
1 => Some(Start::WordByte),
2 => Some(Start::Text),
3 => Some(Start::LineLF),
4 => Some(Start::LineCR),
5 => Some(Start::CustomLineTerminator),
_ => None,
}
}
/// Returns the total number of starting state configurations.
pub(crate) fn len() -> usize {
6
}
/// Return this starting configuration as `u8` integer. It is guaranteed to
/// be less than `Start::len()`.
#[cfg_attr(feature = "perf-inline", inline(always))]
pub(crate) fn as_u8(&self) -> u8 {
// AFAIK, 'as' is the only way to zero-cost convert an int enum to an
// actual int.
*self as u8
}
/// Return this starting configuration as a `usize` integer. It is
/// guaranteed to be less than `Start::len()`.
#[cfg_attr(feature = "perf-inline", inline(always))]
pub(crate) fn as_usize(&self) -> usize {
usize::from(self.as_u8())
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn start_fwd_done_range() {
let smap = StartByteMap::new(&LookMatcher::default());
let input = Input::new("").range(1..0);
let config = Config::from_input_forward(&input);
let start =
config.get_look_behind().map_or(Start::Text, |b| smap.get(b));
assert_eq!(Start::Text, start);
}
#[test]
fn start_rev_done_range() {
let smap = StartByteMap::new(&LookMatcher::default());
let input = Input::new("").range(1..0);
let config = Config::from_input_reverse(&input);
let start =
config.get_look_behind().map_or(Start::Text, |b| smap.get(b));
assert_eq!(Start::Text, start);
}
#[test]
fn start_fwd() {
let f = |haystack, start, end| {
let smap = StartByteMap::new(&LookMatcher::default());
let input = Input::new(haystack).range(start..end);
let config = Config::from_input_forward(&input);
let start =
config.get_look_behind().map_or(Start::Text, |b| smap.get(b));
start
};
assert_eq!(Start::Text, f("", 0, 0));
assert_eq!(Start::Text, f("abc", 0, 3));
assert_eq!(Start::Text, f("\nabc", 0, 3));
assert_eq!(Start::LineLF, f("\nabc", 1, 3));
assert_eq!(Start::LineCR, f("\rabc", 1, 3));
assert_eq!(Start::WordByte, f("abc", 1, 3));
assert_eq!(Start::NonWordByte, f(" abc", 1, 3));
}
#[test]
fn start_rev() {
let f = |haystack, start, end| {
let smap = StartByteMap::new(&LookMatcher::default());
let input = Input::new(haystack).range(start..end);
let config = Config::from_input_reverse(&input);
let start =
config.get_look_behind().map_or(Start::Text, |b| smap.get(b));
start
};
assert_eq!(Start::Text, f("", 0, 0));
assert_eq!(Start::Text, f("abc", 0, 3));
assert_eq!(Start::Text, f("abc\n", 0, 4));
assert_eq!(Start::LineLF, f("abc\nz", 0, 3));
assert_eq!(Start::LineCR, f("abc\rz", 0, 3));
assert_eq!(Start::WordByte, f("abc", 0, 2));
assert_eq!(Start::NonWordByte, f("abc ", 0, 3));
}
}