1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
// Code liberally borrowed from here
// https://github.com/navierr/coloriz
use std::ops;
use std::u32;
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub struct Rgb {
    /// Red
    pub r: u8,
    /// Green
    pub g: u8,
    /// Blue
    pub b: u8,
}

impl Rgb {
    /// Creates a new [Rgb] color
    #[inline]
    pub const fn new(r: u8, g: u8, b: u8) -> Self {
        Self { r, g, b }
    }

    /// Creates a new [Rgb] color with a hex code
    #[inline]
    pub const fn from_hex(hex: u32) -> Self {
        Self::new((hex >> 16) as u8, (hex >> 8) as u8, hex as u8)
    }

    pub fn from_hex_string(hex: String) -> Self {
        if hex.chars().count() == 8 && hex.starts_with("0x") {
            // eprintln!("hex:{:?}", hex);
            let (_, value_string) = hex.split_at(2);
            // eprintln!("value_string:{:?}", value_string);
            let int_val = u64::from_str_radix(value_string, 16);
            match int_val {
                Ok(num) => Self::new(
                    ((num & 0xff0000) >> 16) as u8,
                    ((num & 0xff00) >> 8) as u8,
                    (num & 0xff) as u8,
                ),
                // Don't fail, just make the color black
                // Should we fail?
                _ => Self::new(0, 0, 0),
            }
        } else {
            // Don't fail, just make the color black.
            // Should we fail?
            Self::new(0, 0, 0)
        }
    }

    /// Creates a new [Rgb] color with three [f32] values
    pub fn from_f32(r: f32, g: f32, b: f32) -> Self {
        Self::new(
            (r.clamp(0.0, 1.0) * 255.0) as u8,
            (g.clamp(0.0, 1.0) * 255.0) as u8,
            (b.clamp(0.0, 1.0) * 255.0) as u8,
        )
    }

    /// Creates a grayscale [Rgb] color
    #[inline]
    pub const fn gray(x: u8) -> Self {
        Self::new(x, x, x)
    }

    /// Creates a grayscale [Rgb] color with a [f32] value
    pub fn gray_f32(x: f32) -> Self {
        Self::from_f32(x, x, x)
    }

    /// Creates a new [Rgb] color from a [HSL] color
    // pub fn from_hsl(hsl: HSL) -> Self {
    //     if hsl.s == 0.0 {
    //         return Self::gray_f32(hsl.l);
    //     }

    //     let q = if hsl.l < 0.5 {
    //         hsl.l * (1.0 + hsl.s)
    //     } else {
    //         hsl.l + hsl.s - hsl.l * hsl.s
    //     };
    //     let p = 2.0 * hsl.l - q;
    //     let h2c = |t: f32| {
    //         let t = t.clamp(0.0, 1.0);
    //         if 6.0 * t < 1.0 {
    //             p + 6.0 * (q - p) * t
    //         } else if t < 0.5 {
    //             q
    //         } else if 1.0 < 1.5 * t {
    //             p + 6.0 * (q - p) * (1.0 / 1.5 - t)
    //         } else {
    //             p
    //         }
    //     };

    //     Self::from_f32(h2c(hsl.h + 1.0 / 3.0), h2c(hsl.h), h2c(hsl.h - 1.0 / 3.0))
    // }

    /// Computes the linear interpolation between `self` and `other` for `t`
    pub fn lerp(&self, other: Self, t: f32) -> Self {
        let t = t.clamp(0.0, 1.0);
        self * (1.0 - t) + other * t
    }
}

impl From<(u8, u8, u8)> for Rgb {
    fn from((r, g, b): (u8, u8, u8)) -> Self {
        Self::new(r, g, b)
    }
}

impl From<(f32, f32, f32)> for Rgb {
    fn from((r, g, b): (f32, f32, f32)) -> Self {
        Self::from_f32(r, g, b)
    }
}

use crate::ANSIColorCode;
use crate::TargetGround;
impl ANSIColorCode for Rgb {
    fn ansi_color_code(&self, target: TargetGround) -> String {
        format!("{};2;{};{};{}", target.code() + 8, self.r, self.g, self.b)
    }
}

overload::overload!(
    (lhs: ?Rgb) + (rhs: ?Rgb) -> Rgb {
        Rgb::new(
            lhs.r.saturating_add(rhs.r),
            lhs.g.saturating_add(rhs.g),
            lhs.b.saturating_add(rhs.b)
        )
    }
);

overload::overload!(
    (lhs: ?Rgb) - (rhs: ?Rgb) -> Rgb {
        Rgb::new(
            lhs.r.saturating_sub(rhs.r),
            lhs.g.saturating_sub(rhs.g),
            lhs.b.saturating_sub(rhs.b)
        )
    }
);

overload::overload!(
    (lhs: ?Rgb) * (rhs: ?f32) -> Rgb {
        Rgb::new(
            (lhs.r as f32 * rhs.clamp(0.0, 1.0)) as u8,
            (lhs.g as f32 * rhs.clamp(0.0, 1.0)) as u8,
            (lhs.b as f32 * rhs.clamp(0.0, 1.0)) as u8
        )
    }
);

overload::overload!(
    (lhs: ?f32) * (rhs: ?Rgb) -> Rgb {
        Rgb::new(
            (rhs.r as f32 * lhs.clamp(0.0, 1.0)) as u8,
            (rhs.g as f32 * lhs.clamp(0.0, 1.0)) as u8,
            (rhs.b as f32 * lhs.clamp(0.0, 1.0)) as u8
        )
    }
);

overload::overload!(
    -(rgb: ?Rgb) -> Rgb {
        Rgb::new(
            255 - rgb.r,
            255 - rgb.g,
            255 - rgb.b)
    }
);