1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
use either::{
    Either,
    Either::{Left, Right},
};
use llvm_sys::core::{
    LLVMGetAlignment, LLVMGetAllocatedType, LLVMGetFCmpPredicate, LLVMGetICmpPredicate, LLVMGetInstructionOpcode,
    LLVMGetInstructionParent, LLVMGetMetadata, LLVMGetNextInstruction, LLVMGetNumOperands, LLVMGetOperand,
    LLVMGetOperandUse, LLVMGetPreviousInstruction, LLVMGetVolatile, LLVMHasMetadata, LLVMInstructionClone,
    LLVMInstructionEraseFromParent, LLVMInstructionRemoveFromParent, LLVMIsAAllocaInst, LLVMIsABasicBlock,
    LLVMIsALoadInst, LLVMIsAStoreInst, LLVMIsATerminatorInst, LLVMIsConditional, LLVMIsTailCall, LLVMSetAlignment,
    LLVMSetMetadata, LLVMSetOperand, LLVMSetVolatile, LLVMValueAsBasicBlock,
};
use llvm_sys::core::{LLVMGetOrdering, LLVMSetOrdering};
#[llvm_versions(10.0..=latest)]
use llvm_sys::core::{LLVMIsAAtomicCmpXchgInst, LLVMIsAAtomicRMWInst};
use llvm_sys::prelude::LLVMValueRef;
use llvm_sys::LLVMOpcode;

use std::{ffi::CStr, fmt, fmt::Display};

use crate::values::{BasicValue, BasicValueEnum, BasicValueUse, MetadataValue, Value};
use crate::{basic_block::BasicBlock, types::AnyTypeEnum};
use crate::{types::BasicTypeEnum, values::traits::AsValueRef};
use crate::{AtomicOrdering, FloatPredicate, IntPredicate};

use super::AnyValue;

// REVIEW: Split up into structs for SubTypes on InstructionValues?
// REVIEW: This should maybe be split up into InstructionOpcode and ConstOpcode?
// see LLVMGetConstOpcode
#[llvm_enum(LLVMOpcode)]
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub enum InstructionOpcode {
    // Actual Instructions:
    Add,
    AddrSpaceCast,
    Alloca,
    And,
    AShr,
    AtomicCmpXchg,
    AtomicRMW,
    BitCast,
    Br,
    Call,
    #[llvm_versions(9.0..=latest)]
    CallBr,
    CatchPad,
    CatchRet,
    CatchSwitch,
    CleanupPad,
    CleanupRet,
    ExtractElement,
    ExtractValue,
    #[llvm_versions(8.0..=latest)]
    FNeg,
    FAdd,
    FCmp,
    FDiv,
    Fence,
    FMul,
    FPExt,
    FPToSI,
    FPToUI,
    FPTrunc,
    #[llvm_versions(10.0..=latest)]
    Freeze,
    FRem,
    FSub,
    GetElementPtr,
    ICmp,
    IndirectBr,
    InsertElement,
    InsertValue,
    IntToPtr,
    Invoke,
    LandingPad,
    Load,
    LShr,
    Mul,
    Or,
    #[llvm_variant(LLVMPHI)]
    Phi,
    PtrToInt,
    Resume,
    #[llvm_variant(LLVMRet)]
    Return,
    SDiv,
    Select,
    SExt,
    Shl,
    ShuffleVector,
    SIToFP,
    SRem,
    Store,
    Sub,
    Switch,
    Trunc,
    UDiv,
    UIToFP,
    Unreachable,
    URem,
    UserOp1,
    UserOp2,
    VAArg,
    Xor,
    ZExt,
}

#[derive(Debug, PartialEq, Eq, Copy, Hash)]
pub struct InstructionValue<'ctx> {
    instruction_value: Value<'ctx>,
}

impl<'ctx> InstructionValue<'ctx> {
    fn is_a_load_inst(self) -> bool {
        !unsafe { LLVMIsALoadInst(self.as_value_ref()) }.is_null()
    }
    fn is_a_store_inst(self) -> bool {
        !unsafe { LLVMIsAStoreInst(self.as_value_ref()) }.is_null()
    }
    fn is_a_alloca_inst(self) -> bool {
        !unsafe { LLVMIsAAllocaInst(self.as_value_ref()) }.is_null()
    }
    #[llvm_versions(10.0..=latest)]
    fn is_a_atomicrmw_inst(self) -> bool {
        !unsafe { LLVMIsAAtomicRMWInst(self.as_value_ref()) }.is_null()
    }
    #[llvm_versions(10.0..=latest)]
    fn is_a_cmpxchg_inst(self) -> bool {
        !unsafe { LLVMIsAAtomicCmpXchgInst(self.as_value_ref()) }.is_null()
    }

    /// Get a value from an [LLVMValueRef].
    ///
    /// # Safety
    ///
    /// The ref must be valid and of type instruction.
    pub unsafe fn new(instruction_value: LLVMValueRef) -> Self {
        debug_assert!(!instruction_value.is_null());

        let value = Value::new(instruction_value);

        debug_assert!(value.is_instruction());

        InstructionValue {
            instruction_value: value,
        }
    }

    /// Get name of the `InstructionValue`.
    pub fn get_name(&self) -> Option<&CStr> {
        if self.get_type().is_void_type() {
            None
        } else {
            Some(self.instruction_value.get_name())
        }
    }

    /// Get a instruction with it's name
    /// Compares against all instructions after self, and self.
    pub fn get_instruction_with_name(&self, name: &str) -> Option<InstructionValue<'ctx>> {
        if let Some(ins_name) = self.get_name() {
            if ins_name.to_str() == Ok(name) {
                return Some(*self);
            }
        }
        return self.get_next_instruction()?.get_instruction_with_name(name);
    }

    /// Set name of the `InstructionValue`.
    pub fn set_name(&self, name: &str) -> Result<(), &'static str> {
        if self.get_type().is_void_type() {
            Err("Cannot set name of a void-type instruction!")
        } else {
            self.instruction_value.set_name(name);
            Ok(())
        }
    }

    /// Get type of the current InstructionValue
    pub fn get_type(self) -> AnyTypeEnum<'ctx> {
        unsafe { AnyTypeEnum::new(self.instruction_value.get_type()) }
    }

    pub fn get_opcode(self) -> InstructionOpcode {
        let opcode = unsafe { LLVMGetInstructionOpcode(self.as_value_ref()) };

        InstructionOpcode::new(opcode)
    }

    pub fn get_previous_instruction(self) -> Option<Self> {
        let value = unsafe { LLVMGetPreviousInstruction(self.as_value_ref()) };

        if value.is_null() {
            return None;
        }

        unsafe { Some(InstructionValue::new(value)) }
    }

    pub fn get_next_instruction(self) -> Option<Self> {
        let value = unsafe { LLVMGetNextInstruction(self.as_value_ref()) };

        if value.is_null() {
            return None;
        }

        unsafe { Some(InstructionValue::new(value)) }
    }

    // REVIEW: Potentially unsafe if parent BB or grandparent fn were removed?
    pub fn erase_from_basic_block(self) {
        unsafe { LLVMInstructionEraseFromParent(self.as_value_ref()) }
    }

    // REVIEW: Potentially unsafe if parent BB or grandparent fn were removed?
    #[llvm_versions(4.0..=latest)]
    pub fn remove_from_basic_block(self) {
        unsafe { LLVMInstructionRemoveFromParent(self.as_value_ref()) }
    }

    // REVIEW: Potentially unsafe is parent BB or grandparent fn was deleted
    // REVIEW: Should this *not* be an option? Parent should always exist,
    // but I doubt LLVM returns null if the parent BB (or grandparent FN)
    // was deleted... Invalid memory is more likely. Cloned IV will have no
    // parent?
    pub fn get_parent(self) -> Option<BasicBlock<'ctx>> {
        unsafe { BasicBlock::new(LLVMGetInstructionParent(self.as_value_ref())) }
    }

    /// Returns if the instruction is a terminator
    pub fn is_terminator(self) -> bool {
        unsafe { !LLVMIsATerminatorInst(self.as_value_ref()).is_null() }
    }

    // SubTypes: Only apply to terminators
    /// Returns if a terminator is conditional or not
    pub fn is_conditional(self) -> bool {
        if self.is_terminator() {
            unsafe { LLVMIsConditional(self.as_value_ref()) == 1 }
        } else {
            false
        }
    }

    pub fn is_tail_call(self) -> bool {
        // LLVMIsTailCall has UB if the value is not an llvm::CallInst*.
        if self.get_opcode() == InstructionOpcode::Call {
            unsafe { LLVMIsTailCall(self.as_value_ref()) == 1 }
        } else {
            false
        }
    }

    /// Returns the tail call kind on call instructions.
    ///
    /// Other instructions return `None`.
    #[llvm_versions(18.0..=latest)]
    pub fn get_tail_call_kind(self) -> Option<super::LLVMTailCallKind> {
        if self.get_opcode() == InstructionOpcode::Call {
            unsafe { llvm_sys::core::LLVMGetTailCallKind(self.as_value_ref()) }.into()
        } else {
            None
        }
    }

    /// Check whether this instructions supports [fast math flags][0].
    ///
    /// [0]: https://llvm.org/docs/LangRef.html#fast-math-flags
    #[llvm_versions(18.0..=latest)]
    pub fn can_use_fast_math_flags(self) -> bool {
        unsafe { llvm_sys::core::LLVMCanValueUseFastMathFlags(self.as_value_ref()) == 1 }
    }

    /// Get [fast math flags][0] of supported instructions.
    ///
    /// Calling this on unsupported instructions is safe and returns `None`.
    ///
    /// [0]: https://llvm.org/docs/LangRef.html#fast-math-flags
    #[llvm_versions(18.0..=latest)]
    pub fn get_fast_math_flags(self) -> Option<u32> {
        self.can_use_fast_math_flags()
            .then(|| unsafe { llvm_sys::core::LLVMGetFastMathFlags(self.as_value_ref()) } as u32)
    }

    /// Set [fast math flags][0] on supported instructions.
    ///
    /// Calling this on unsupported instructions is safe and results in a no-op.
    ///
    /// [0]: https://llvm.org/docs/LangRef.html#fast-math-flags
    #[llvm_versions(18.0..=latest)]
    pub fn set_fast_math_flags(self, flags: u32) {
        if self.can_use_fast_math_flags() {
            unsafe { llvm_sys::core::LLVMSetFastMathFlags(self.as_value_ref(), flags) };
        }
    }

    /// Check if a `zext` instruction has the non-negative flag set.
    ///
    /// Calling this function on other instructions is safe and returns `None`.
    #[llvm_versions(18.0..=latest)]
    pub fn get_non_negative_flag(self) -> Option<bool> {
        (self.get_opcode() == InstructionOpcode::ZExt)
            .then(|| unsafe { llvm_sys::core::LLVMGetNNeg(self.as_value_ref()) == 1 })
    }

    /// Set the non-negative flag on `zext` instructions.
    ///
    /// Calling this function on other instructions is safe and results in a no-op.
    #[llvm_versions(18.0..=latest)]
    pub fn set_non_negative_flag(self, flag: bool) {
        if self.get_opcode() == InstructionOpcode::ZExt {
            unsafe { llvm_sys::core::LLVMSetNNeg(self.as_value_ref(), flag as i32) };
        }
    }

    /// Checks if an `or` instruction has the `disjoint` flag set.
    ///
    /// Calling this function on other instructions is safe and returns `None`.
    #[llvm_versions(18.0..=latest)]
    pub fn get_disjoint_flag(self) -> Option<bool> {
        (self.get_opcode() == InstructionOpcode::Or)
            .then(|| unsafe { llvm_sys::core::LLVMGetIsDisjoint(self.as_value_ref()) == 1 })
    }

    /// Set the `disjoint` flag on `or` instructions.
    ///
    /// Calling this function on other instructions is safe and results in a no-op.
    #[llvm_versions(18.0..=latest)]
    pub fn set_disjoint_flag(self, flag: bool) {
        if self.get_opcode() == InstructionOpcode::Or {
            unsafe { llvm_sys::core::LLVMSetIsDisjoint(self.as_value_ref(), flag as i32) };
        }
    }

    pub fn replace_all_uses_with(self, other: &InstructionValue<'ctx>) {
        self.instruction_value.replace_all_uses_with(other.as_value_ref())
    }

    // SubTypes: Only apply to memory access instructions
    /// Returns whether or not a memory access instruction is volatile.
    #[llvm_versions(4.0..=9.0)]
    pub fn get_volatile(self) -> Result<bool, &'static str> {
        // Although cmpxchg and atomicrmw can have volatile, LLVM's C API
        // does not export that functionality until 10.0.
        if !self.is_a_load_inst() && !self.is_a_store_inst() {
            return Err("Value is not a load or store.");
        }
        Ok(unsafe { LLVMGetVolatile(self.as_value_ref()) } == 1)
    }

    // SubTypes: Only apply to memory access instructions
    /// Returns whether or not a memory access instruction is volatile.
    #[llvm_versions(10.0..=latest)]
    pub fn get_volatile(self) -> Result<bool, &'static str> {
        if !self.is_a_load_inst() && !self.is_a_store_inst() && !self.is_a_atomicrmw_inst() && !self.is_a_cmpxchg_inst()
        {
            return Err("Value is not a load, store, atomicrmw or cmpxchg.");
        }
        Ok(unsafe { LLVMGetVolatile(self.as_value_ref()) } == 1)
    }

    // SubTypes: Only apply to memory access instructions
    /// Sets whether or not a memory access instruction is volatile.
    #[llvm_versions(4.0..=9.0)]
    pub fn set_volatile(self, volatile: bool) -> Result<(), &'static str> {
        // Although cmpxchg and atomicrmw can have volatile, LLVM's C API
        // does not export that functionality until 10.0.
        if !self.is_a_load_inst() && !self.is_a_store_inst() {
            return Err("Value is not a load or store.");
        }
        Ok(unsafe { LLVMSetVolatile(self.as_value_ref(), volatile as i32) })
    }

    // SubTypes: Only apply to memory access instructions
    /// Sets whether or not a memory access instruction is volatile.
    #[llvm_versions(10.0..=latest)]
    pub fn set_volatile(self, volatile: bool) -> Result<(), &'static str> {
        if !self.is_a_load_inst() && !self.is_a_store_inst() && !self.is_a_atomicrmw_inst() && !self.is_a_cmpxchg_inst()
        {
            return Err("Value is not a load, store, atomicrmw or cmpxchg.");
        }
        unsafe { LLVMSetVolatile(self.as_value_ref(), volatile as i32) };
        Ok(())
    }

    // SubTypes: Only apply to alloca instruction
    /// Returns the type that is allocated by the alloca instruction.
    pub fn get_allocated_type(self) -> Result<BasicTypeEnum<'ctx>, &'static str> {
        if !self.is_a_alloca_inst() {
            return Err("Value is not an alloca.");
        }
        Ok(unsafe { BasicTypeEnum::new(LLVMGetAllocatedType(self.as_value_ref())) })
    }

    // SubTypes: Only apply to memory access and alloca instructions
    /// Returns alignment on a memory access instruction or alloca.
    pub fn get_alignment(self) -> Result<u32, &'static str> {
        if !self.is_a_alloca_inst() && !self.is_a_load_inst() && !self.is_a_store_inst() {
            return Err("Value is not an alloca, load or store.");
        }
        Ok(unsafe { LLVMGetAlignment(self.as_value_ref()) })
    }

    // SubTypes: Only apply to memory access and alloca instructions
    /// Sets alignment on a memory access instruction or alloca.
    pub fn set_alignment(self, alignment: u32) -> Result<(), &'static str> {
        #[cfg(any(feature = "llvm11-0", feature = "llvm12-0"))]
        {
            if alignment == 0 {
                return Err("Alignment cannot be 0");
            }
        }
        //The alignment = 0 check above covers LLVM >= 11, the != 0 check here keeps older versions compatible
        if !alignment.is_power_of_two() && alignment != 0 {
            return Err("Alignment is not a power of 2!");
        }
        if !self.is_a_alloca_inst() && !self.is_a_load_inst() && !self.is_a_store_inst() {
            return Err("Value is not an alloca, load or store.");
        }
        unsafe { LLVMSetAlignment(self.as_value_ref(), alignment) };
        Ok(())
    }

    // SubTypes: Only apply to memory access instructions
    /// Returns atomic ordering on a memory access instruction.
    pub fn get_atomic_ordering(self) -> Result<AtomicOrdering, &'static str> {
        if !self.is_a_load_inst() && !self.is_a_store_inst() {
            return Err("Value is not a load or store.");
        }
        Ok(unsafe { LLVMGetOrdering(self.as_value_ref()) }.into())
    }

    // SubTypes: Only apply to memory access instructions
    /// Sets atomic ordering on a memory access instruction.
    pub fn set_atomic_ordering(self, ordering: AtomicOrdering) -> Result<(), &'static str> {
        // Although fence and atomicrmw both have an ordering, the LLVM C API
        // does not support them. The cmpxchg instruction has two orderings and
        // does not work with this API.
        if !self.is_a_load_inst() && !self.is_a_store_inst() {
            return Err("Value is not a load or store instruction.");
        }
        match ordering {
            AtomicOrdering::Release if self.is_a_load_inst() => {
                return Err("The release ordering is not valid on load instructions.")
            },
            AtomicOrdering::AcquireRelease => {
                return Err("The acq_rel ordering is not valid on load or store instructions.")
            },
            AtomicOrdering::Acquire if self.is_a_store_inst() => {
                return Err("The acquire ordering is not valid on store instructions.")
            },
            _ => {},
        };
        unsafe { LLVMSetOrdering(self.as_value_ref(), ordering.into()) };
        Ok(())
    }

    /// Obtains the number of operands an `InstructionValue` has.
    /// An operand is a `BasicValue` used in an IR instruction.
    ///
    /// The following example,
    ///
    /// ```no_run
    /// use inkwell::AddressSpace;
    /// use inkwell::context::Context;
    ///
    /// let context = Context::create();
    /// let module = context.create_module("ivs");
    /// let builder = context.create_builder();
    /// let void_type = context.void_type();
    /// let f32_type = context.f32_type();
    /// let f32_ptr_type = f32_type.ptr_type(AddressSpace::default());
    /// let fn_type = void_type.fn_type(&[f32_ptr_type.into()], false);
    ///
    /// let function = module.add_function("take_f32_ptr", fn_type, None);
    /// let basic_block = context.append_basic_block(function, "entry");
    ///
    /// builder.position_at_end(basic_block);
    ///
    /// let arg1 = function.get_first_param().unwrap().into_pointer_value();
    /// let f32_val = f32_type.const_float(::std::f64::consts::PI);
    /// let store_instruction = builder.build_store(arg1, f32_val).unwrap();
    /// let free_instruction = builder.build_free(arg1).unwrap();
    /// let return_instruction = builder.build_return(None).unwrap();
    ///
    /// assert_eq!(store_instruction.get_num_operands(), 2);
    /// assert_eq!(free_instruction.get_num_operands(), 2);
    /// assert_eq!(return_instruction.get_num_operands(), 0);
    /// ```
    ///
    /// will generate LLVM IR roughly like (varying slightly across LLVM versions):
    ///
    /// ```ir
    /// ; ModuleID = 'ivs'
    /// source_filename = "ivs"
    ///
    /// define void @take_f32_ptr(float* %0) {
    /// entry:
    ///   store float 0x400921FB60000000, float* %0
    ///   %1 = bitcast float* %0 to i8*
    ///   tail call void @free(i8* %1)
    ///   ret void
    /// }
    ///
    /// declare void @free(i8*)
    /// ```
    ///
    /// which makes the number of instruction operands clear:
    /// 1) Store has two: a const float and a variable float pointer %0
    /// 2) Bitcast has one: a variable float pointer %0
    /// 3) Function call has two: i8 pointer %1 argument, and the free function itself
    /// 4) Void return has zero: void is not a value and does not count as an operand
    /// even though the return instruction can take values.
    pub fn get_num_operands(self) -> u32 {
        unsafe { LLVMGetNumOperands(self.as_value_ref()) as u32 }
    }

    /// Obtains the operand an `InstructionValue` has at a given index if any.
    /// An operand is a `BasicValue` used in an IR instruction.
    ///
    /// The following example,
    ///
    /// ```no_run
    /// use inkwell::AddressSpace;
    /// use inkwell::context::Context;
    ///
    /// let context = Context::create();
    /// let module = context.create_module("ivs");
    /// let builder = context.create_builder();
    /// let void_type = context.void_type();
    /// let f32_type = context.f32_type();
    /// let f32_ptr_type = f32_type.ptr_type(AddressSpace::default());
    /// let fn_type = void_type.fn_type(&[f32_ptr_type.into()], false);
    ///
    /// let function = module.add_function("take_f32_ptr", fn_type, None);
    /// let basic_block = context.append_basic_block(function, "entry");
    ///
    /// builder.position_at_end(basic_block);
    ///
    /// let arg1 = function.get_first_param().unwrap().into_pointer_value();
    /// let f32_val = f32_type.const_float(::std::f64::consts::PI);
    /// let store_instruction = builder.build_store(arg1, f32_val).unwrap();
    /// let free_instruction = builder.build_free(arg1).unwrap();
    /// let return_instruction = builder.build_return(None).unwrap();
    ///
    /// assert!(store_instruction.get_operand(0).is_some());
    /// assert!(store_instruction.get_operand(1).is_some());
    /// assert!(store_instruction.get_operand(2).is_none());
    /// assert!(free_instruction.get_operand(0).is_some());
    /// assert!(free_instruction.get_operand(1).is_some());
    /// assert!(free_instruction.get_operand(2).is_none());
    /// assert!(return_instruction.get_operand(0).is_none());
    /// assert!(return_instruction.get_operand(1).is_none());
    /// ```
    ///
    /// will generate LLVM IR roughly like (varying slightly across LLVM versions):
    ///
    /// ```ir
    /// ; ModuleID = 'ivs'
    /// source_filename = "ivs"
    ///
    /// define void @take_f32_ptr(float* %0) {
    /// entry:
    ///   store float 0x400921FB60000000, float* %0
    ///   %1 = bitcast float* %0 to i8*
    ///   tail call void @free(i8* %1)
    ///   ret void
    /// }
    ///
    /// declare void @free(i8*)
    /// ```
    ///
    /// which makes the instruction operands clear:
    /// 1) Store has two: a const float and a variable float pointer %0
    /// 2) Bitcast has one: a variable float pointer %0
    /// 3) Function call has two: i8 pointer %1 argument, and the free function itself
    /// 4) Void return has zero: void is not a value and does not count as an operand
    /// even though the return instruction can take values.
    pub fn get_operand(self, index: u32) -> Option<Either<BasicValueEnum<'ctx>, BasicBlock<'ctx>>> {
        let num_operands = self.get_num_operands();

        if index >= num_operands {
            return None;
        }

        unsafe { self.get_operand_unchecked(index) }
    }

    /// Get the operand of an `InstructionValue`.
    ///
    /// # Safety
    ///
    /// The index must be less than [InstructionValue::get_num_operands].
    pub unsafe fn get_operand_unchecked(self, index: u32) -> Option<Either<BasicValueEnum<'ctx>, BasicBlock<'ctx>>> {
        let operand = unsafe { LLVMGetOperand(self.as_value_ref(), index) };

        if operand.is_null() {
            return None;
        }

        let is_basic_block = unsafe { !LLVMIsABasicBlock(operand).is_null() };

        if is_basic_block {
            let bb = unsafe { BasicBlock::new(LLVMValueAsBasicBlock(operand)) };

            Some(Right(bb.expect("BasicBlock should always be valid")))
        } else {
            Some(Left(unsafe { BasicValueEnum::new(operand) }))
        }
    }

    /// Get an instruction value operand iterator.
    pub fn get_operands(self) -> OperandIter<'ctx> {
        OperandIter {
            iv: self,
            i: 0,
            count: self.get_num_operands(),
        }
    }

    /// Sets the operand an `InstructionValue` has at a given index if possible.
    /// An operand is a `BasicValue` used in an IR instruction.
    ///
    /// ```no_run
    /// use inkwell::AddressSpace;
    /// use inkwell::context::Context;
    ///
    /// let context = Context::create();
    /// let module = context.create_module("ivs");
    /// let builder = context.create_builder();
    /// let void_type = context.void_type();
    /// let f32_type = context.f32_type();
    /// let f32_ptr_type = f32_type.ptr_type(AddressSpace::default());
    /// let fn_type = void_type.fn_type(&[f32_ptr_type.into()], false);
    ///
    /// let function = module.add_function("take_f32_ptr", fn_type, None);
    /// let basic_block = context.append_basic_block(function, "entry");
    ///
    /// builder.position_at_end(basic_block);
    ///
    /// let arg1 = function.get_first_param().unwrap().into_pointer_value();
    /// let f32_val = f32_type.const_float(::std::f64::consts::PI);
    /// let store_instruction = builder.build_store(arg1, f32_val).unwrap();
    /// let free_instruction = builder.build_free(arg1).unwrap();
    /// let return_instruction = builder.build_return(None).unwrap();
    ///
    /// // This will produce invalid IR:
    /// free_instruction.set_operand(0, f32_val);
    ///
    /// assert_eq!(free_instruction.get_operand(0).unwrap().left().unwrap(), f32_val);
    /// ```
    pub fn set_operand<BV: BasicValue<'ctx>>(self, index: u32, val: BV) -> bool {
        let num_operands = self.get_num_operands();

        if index >= num_operands {
            return false;
        }

        unsafe { LLVMSetOperand(self.as_value_ref(), index, val.as_value_ref()) }

        true
    }

    /// Gets the use of an operand(`BasicValue`), if any.
    ///
    /// ```no_run
    /// use inkwell::AddressSpace;
    /// use inkwell::context::Context;
    /// use inkwell::values::BasicValue;
    ///
    /// let context = Context::create();
    /// let module = context.create_module("ivs");
    /// let builder = context.create_builder();
    /// let void_type = context.void_type();
    /// let f32_type = context.f32_type();
    /// let f32_ptr_type = f32_type.ptr_type(AddressSpace::default());
    /// let fn_type = void_type.fn_type(&[f32_ptr_type.into()], false);
    ///
    /// let function = module.add_function("take_f32_ptr", fn_type, None);
    /// let basic_block = context.append_basic_block(function, "entry");
    ///
    /// builder.position_at_end(basic_block);
    ///
    /// let arg1 = function.get_first_param().unwrap().into_pointer_value();
    /// let f32_val = f32_type.const_float(::std::f64::consts::PI);
    /// let store_instruction = builder.build_store(arg1, f32_val).unwrap();
    /// let free_instruction = builder.build_free(arg1).unwrap();
    /// let return_instruction = builder.build_return(None).unwrap();
    ///
    /// assert_eq!(store_instruction.get_operand_use(1), arg1.get_first_use());
    /// ```
    pub fn get_operand_use(self, index: u32) -> Option<BasicValueUse<'ctx>> {
        let num_operands = self.get_num_operands();

        if index >= num_operands {
            return None;
        }

        unsafe { self.get_operand_use_unchecked(index) }
    }

    /// Gets the use of an operand(`BasicValue`), if any.
    ///
    /// # Safety
    ///
    /// The index must be smaller than [InstructionValue::get_num_operands].
    pub unsafe fn get_operand_use_unchecked(self, index: u32) -> Option<BasicValueUse<'ctx>> {
        let use_ = unsafe { LLVMGetOperandUse(self.as_value_ref(), index) };

        if use_.is_null() {
            return None;
        }

        unsafe { Some(BasicValueUse::new(use_)) }
    }

    /// Get an instruction value operand use iterator.
    pub fn get_operand_uses(self) -> OperandUseIter<'ctx> {
        OperandUseIter {
            iv: self,
            i: 0,
            count: self.get_num_operands(),
        }
    }

    /// Gets the first use of an `InstructionValue` if any.
    ///
    /// The following example,
    ///
    /// ```no_run
    /// use inkwell::AddressSpace;
    /// use inkwell::context::Context;
    /// use inkwell::values::BasicValue;
    ///
    /// let context = Context::create();
    /// let module = context.create_module("ivs");
    /// let builder = context.create_builder();
    /// let void_type = context.void_type();
    /// let f32_type = context.f32_type();
    /// let f32_ptr_type = f32_type.ptr_type(AddressSpace::default());
    /// let fn_type = void_type.fn_type(&[f32_ptr_type.into()], false);
    ///
    /// let function = module.add_function("take_f32_ptr", fn_type, None);
    /// let basic_block = context.append_basic_block(function, "entry");
    ///
    /// builder.position_at_end(basic_block);
    ///
    /// let arg1 = function.get_first_param().unwrap().into_pointer_value();
    /// let f32_val = f32_type.const_float(::std::f64::consts::PI);
    /// let store_instruction = builder.build_store(arg1, f32_val).unwrap();
    /// let free_instruction = builder.build_free(arg1).unwrap();
    /// let return_instruction = builder.build_return(None).unwrap();
    ///
    /// assert!(arg1.get_first_use().is_some());
    /// ```
    pub fn get_first_use(self) -> Option<BasicValueUse<'ctx>> {
        self.instruction_value.get_first_use()
    }

    /// Gets the predicate of an `ICmp` `InstructionValue`.
    /// For instance, in the LLVM instruction
    /// `%3 = icmp slt i32 %0, %1`
    /// this gives the `slt`.
    ///
    /// If the instruction is not an `ICmp`, this returns None.
    pub fn get_icmp_predicate(self) -> Option<IntPredicate> {
        // REVIEW: this call to get_opcode() can be inefficient;
        // what happens if we don't perform this check, and just call
        // LLVMGetICmpPredicate() regardless?
        if self.get_opcode() == InstructionOpcode::ICmp {
            let pred = unsafe { LLVMGetICmpPredicate(self.as_value_ref()) };
            Some(IntPredicate::new(pred))
        } else {
            None
        }
    }

    /// Gets the predicate of an `FCmp` `InstructionValue`.
    /// For instance, in the LLVM instruction
    /// `%3 = fcmp olt float %0, %1`
    /// this gives the `olt`.
    ///
    /// If the instruction is not an `FCmp`, this returns None.
    pub fn get_fcmp_predicate(self) -> Option<FloatPredicate> {
        // REVIEW: this call to get_opcode() can be inefficient;
        // what happens if we don't perform this check, and just call
        // LLVMGetFCmpPredicate() regardless?
        if self.get_opcode() == InstructionOpcode::FCmp {
            let pred = unsafe { LLVMGetFCmpPredicate(self.as_value_ref()) };
            Some(FloatPredicate::new(pred))
        } else {
            None
        }
    }

    /// Determines whether or not this `Instruction` has any associated metadata.
    pub fn has_metadata(self) -> bool {
        unsafe { LLVMHasMetadata(self.instruction_value.value) == 1 }
    }

    /// Gets the `MetadataValue` associated with this `Instruction` at a specific
    /// `kind_id`.
    pub fn get_metadata(self, kind_id: u32) -> Option<MetadataValue<'ctx>> {
        let metadata_value = unsafe { LLVMGetMetadata(self.instruction_value.value, kind_id) };

        if metadata_value.is_null() {
            return None;
        }

        unsafe { Some(MetadataValue::new(metadata_value)) }
    }

    /// Determines whether or not this `Instruction` has any associated metadata
    /// `kind_id`.
    pub fn set_metadata(self, metadata: MetadataValue<'ctx>, kind_id: u32) -> Result<(), &'static str> {
        if !metadata.is_node() {
            return Err("metadata is expected to be a node.");
        }

        unsafe {
            LLVMSetMetadata(self.instruction_value.value, kind_id, metadata.as_value_ref());
        }

        Ok(())
    }
}

impl Clone for InstructionValue<'_> {
    /// Creates a clone of this `InstructionValue`, and returns it.
    /// The clone will have no parent, and no name.
    fn clone(&self) -> Self {
        unsafe { InstructionValue::new(LLVMInstructionClone(self.as_value_ref())) }
    }
}

unsafe impl AsValueRef for InstructionValue<'_> {
    fn as_value_ref(&self) -> LLVMValueRef {
        self.instruction_value.value
    }
}

impl Display for InstructionValue<'_> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(f, "{}", self.print_to_string())
    }
}

/// Iterate over all the operands of an instruction value.
#[derive(Debug)]
pub struct OperandIter<'ctx> {
    iv: InstructionValue<'ctx>,
    i: u32,
    count: u32,
}

impl<'ctx> Iterator for OperandIter<'ctx> {
    type Item = Option<Either<BasicValueEnum<'ctx>, BasicBlock<'ctx>>>;

    fn next(&mut self) -> Option<Self::Item> {
        if self.i < self.count {
            let result = unsafe { self.iv.get_operand_unchecked(self.i) };
            self.i += 1;
            Some(result)
        } else {
            None
        }
    }
}

/// Iterate over all the operands of an instruction value.
#[derive(Debug)]
pub struct OperandUseIter<'ctx> {
    iv: InstructionValue<'ctx>,
    i: u32,
    count: u32,
}

impl<'ctx> Iterator for OperandUseIter<'ctx> {
    type Item = Option<BasicValueUse<'ctx>>;

    fn next(&mut self) -> Option<Self::Item> {
        if self.i < self.count {
            let result = unsafe { self.iv.get_operand_use_unchecked(self.i) };
            self.i += 1;
            Some(result)
        } else {
            None
        }
    }
}