1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
use alloc::{borrow::Cow, string::String, sync::Arc};

use regex_automata::{meta, util::captures, Input, PatternID};

use crate::{error::Error, RegexBuilder};

/// A compiled regular expression for searching Unicode haystacks.
///
/// A `Regex` can be used to search haystacks, split haystacks into substrings
/// or replace substrings in a haystack with a different substring. All
/// searching is done with an implicit `(?s:.)*?` at the beginning and end of
/// an pattern. To force an expression to match the whole string (or a prefix
/// or a suffix), you must use an anchor like `^` or `$` (or `\A` and `\z`).
///
/// While this crate will handle Unicode strings (whether in the regular
/// expression or in the haystack), all positions returned are **byte
/// offsets**. Every byte offset is guaranteed to be at a Unicode code point
/// boundary. That is, all offsets returned by the `Regex` API are guaranteed
/// to be ranges that can slice a `&str` without panicking. If you want to
/// relax this requirement, then you must search `&[u8]` haystacks with a
/// [`bytes::Regex`](crate::bytes::Regex).
///
/// The only methods that allocate new strings are the string replacement
/// methods. All other methods (searching and splitting) return borrowed
/// references into the haystack given.
///
/// # Example
///
/// Find the offsets of a US phone number:
///
/// ```
/// use regex::Regex;
///
/// let re = Regex::new("[0-9]{3}-[0-9]{3}-[0-9]{4}").unwrap();
/// let m = re.find("phone: 111-222-3333").unwrap();
/// assert_eq!(7..19, m.range());
/// ```
///
/// # Example: extracting capture groups
///
/// A common way to use regexes is with capture groups. That is, instead of
/// just looking for matches of an entire regex, parentheses are used to create
/// groups that represent part of the match.
///
/// For example, consider a haystack with multiple lines, and each line has
/// three whitespace delimited fields where the second field is expected to be
/// a number and the third field a boolean. To make this convenient, we use
/// the [`Captures::extract`] API to put the strings that match each group
/// into a fixed size array:
///
/// ```
/// use regex::Regex;
///
/// let hay = "
/// rabbit         54 true
/// groundhog 2 true
/// does not match
/// fox   109    false
/// ";
/// let re = Regex::new(r"(?m)^\s*(\S+)\s+([0-9]+)\s+(true|false)\s*$").unwrap();
/// let mut fields: Vec<(&str, i64, bool)> = vec![];
/// for (_, [f1, f2, f3]) in re.captures_iter(hay).map(|caps| caps.extract()) {
///     fields.push((f1, f2.parse()?, f3.parse()?));
/// }
/// assert_eq!(fields, vec![
///     ("rabbit", 54, true),
///     ("groundhog", 2, true),
///     ("fox", 109, false),
/// ]);
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
///
/// # Example: searching with the `Pattern` trait
///
/// **Note**: This section requires that this crate is compiled with the
/// `pattern` Cargo feature enabled, which **requires nightly Rust**.
///
/// Since `Regex` implements `Pattern` from the standard library, one can
/// use regexes with methods defined on `&str`. For example, `is_match`,
/// `find`, `find_iter` and `split` can, in some cases, be replaced with
/// `str::contains`, `str::find`, `str::match_indices` and `str::split`.
///
/// Here are some examples:
///
/// ```ignore
/// use regex::Regex;
///
/// let re = Regex::new(r"\d+").unwrap();
/// let hay = "a111b222c";
///
/// assert!(hay.contains(&re));
/// assert_eq!(hay.find(&re), Some(1));
/// assert_eq!(hay.match_indices(&re).collect::<Vec<_>>(), vec![
///     (1, "111"),
///     (5, "222"),
/// ]);
/// assert_eq!(hay.split(&re).collect::<Vec<_>>(), vec!["a", "b", "c"]);
/// ```
#[derive(Clone)]
pub struct Regex {
    pub(crate) meta: meta::Regex,
    pub(crate) pattern: Arc<str>,
}

impl core::fmt::Display for Regex {
    /// Shows the original regular expression.
    fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
        write!(f, "{}", self.as_str())
    }
}

impl core::fmt::Debug for Regex {
    /// Shows the original regular expression.
    fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
        f.debug_tuple("Regex").field(&self.as_str()).finish()
    }
}

impl core::str::FromStr for Regex {
    type Err = Error;

    /// Attempts to parse a string into a regular expression
    fn from_str(s: &str) -> Result<Regex, Error> {
        Regex::new(s)
    }
}

impl TryFrom<&str> for Regex {
    type Error = Error;

    /// Attempts to parse a string into a regular expression
    fn try_from(s: &str) -> Result<Regex, Error> {
        Regex::new(s)
    }
}

impl TryFrom<String> for Regex {
    type Error = Error;

    /// Attempts to parse a string into a regular expression
    fn try_from(s: String) -> Result<Regex, Error> {
        Regex::new(&s)
    }
}

/// Core regular expression methods.
impl Regex {
    /// Compiles a regular expression. Once compiled, it can be used repeatedly
    /// to search, split or replace substrings in a haystack.
    ///
    /// Note that regex compilation tends to be a somewhat expensive process,
    /// and unlike higher level environments, compilation is not automatically
    /// cached for you. One should endeavor to compile a regex once and then
    /// reuse it. For example, it's a bad idea to compile the same regex
    /// repeatedly in a loop.
    ///
    /// # Errors
    ///
    /// If an invalid pattern is given, then an error is returned.
    /// An error is also returned if the pattern is valid, but would
    /// produce a regex that is bigger than the configured size limit via
    /// [`RegexBuilder::size_limit`]. (A reasonable size limit is enabled by
    /// default.)
    ///
    /// # Example
    ///
    /// ```
    /// use regex::Regex;
    ///
    /// // An Invalid pattern because of an unclosed parenthesis
    /// assert!(Regex::new(r"foo(bar").is_err());
    /// // An invalid pattern because the regex would be too big
    /// // because Unicode tends to inflate things.
    /// assert!(Regex::new(r"\w{1000}").is_err());
    /// // Disabling Unicode can make the regex much smaller,
    /// // potentially by up to or more than an order of magnitude.
    /// assert!(Regex::new(r"(?-u:\w){1000}").is_ok());
    /// ```
    pub fn new(re: &str) -> Result<Regex, Error> {
        RegexBuilder::new(re).build()
    }

    /// Returns true if and only if there is a match for the regex anywhere
    /// in the haystack given.
    ///
    /// It is recommended to use this method if all you need to do is test
    /// whether a match exists, since the underlying matching engine may be
    /// able to do less work.
    ///
    /// # Example
    ///
    /// Test if some haystack contains at least one word with exactly 13
    /// Unicode word characters:
    ///
    /// ```
    /// use regex::Regex;
    ///
    /// let re = Regex::new(r"\b\w{13}\b").unwrap();
    /// let hay = "I categorically deny having triskaidekaphobia.";
    /// assert!(re.is_match(hay));
    /// ```
    #[inline]
    pub fn is_match(&self, haystack: &str) -> bool {
        self.is_match_at(haystack, 0)
    }

    /// This routine searches for the first match of this regex in the
    /// haystack given, and if found, returns a [`Match`]. The `Match`
    /// provides access to both the byte offsets of the match and the actual
    /// substring that matched.
    ///
    /// Note that this should only be used if you want to find the entire
    /// match. If instead you just want to test the existence of a match,
    /// it's potentially faster to use `Regex::is_match(hay)` instead of
    /// `Regex::find(hay).is_some()`.
    ///
    /// # Example
    ///
    /// Find the first word with exactly 13 Unicode word characters:
    ///
    /// ```
    /// use regex::Regex;
    ///
    /// let re = Regex::new(r"\b\w{13}\b").unwrap();
    /// let hay = "I categorically deny having triskaidekaphobia.";
    /// let mat = re.find(hay).unwrap();
    /// assert_eq!(2..15, mat.range());
    /// assert_eq!("categorically", mat.as_str());
    /// ```
    #[inline]
    pub fn find<'h>(&self, haystack: &'h str) -> Option<Match<'h>> {
        self.find_at(haystack, 0)
    }

    /// Returns an iterator that yields successive non-overlapping matches in
    /// the given haystack. The iterator yields values of type [`Match`].
    ///
    /// # Time complexity
    ///
    /// Note that since `find_iter` runs potentially many searches on the
    /// haystack and since each search has worst case `O(m * n)` time
    /// complexity, the overall worst case time complexity for iteration is
    /// `O(m * n^2)`.
    ///
    /// # Example
    ///
    /// Find every word with exactly 13 Unicode word characters:
    ///
    /// ```
    /// use regex::Regex;
    ///
    /// let re = Regex::new(r"\b\w{13}\b").unwrap();
    /// let hay = "Retroactively relinquishing remunerations is reprehensible.";
    /// let matches: Vec<_> = re.find_iter(hay).map(|m| m.as_str()).collect();
    /// assert_eq!(matches, vec![
    ///     "Retroactively",
    ///     "relinquishing",
    ///     "remunerations",
    ///     "reprehensible",
    /// ]);
    /// ```
    #[inline]
    pub fn find_iter<'r, 'h>(&'r self, haystack: &'h str) -> Matches<'r, 'h> {
        Matches { haystack, it: self.meta.find_iter(haystack) }
    }

    /// This routine searches for the first match of this regex in the haystack
    /// given, and if found, returns not only the overall match but also the
    /// matches of each capture group in the regex. If no match is found, then
    /// `None` is returned.
    ///
    /// Capture group `0` always corresponds to an implicit unnamed group that
    /// includes the entire match. If a match is found, this group is always
    /// present. Subsequent groups may be named and are numbered, starting
    /// at 1, by the order in which the opening parenthesis appears in the
    /// pattern. For example, in the pattern `(?<a>.(?<b>.))(?<c>.)`, `a`,
    /// `b` and `c` correspond to capture group indices `1`, `2` and `3`,
    /// respectively.
    ///
    /// You should only use `captures` if you need access to the capture group
    /// matches. Otherwise, [`Regex::find`] is generally faster for discovering
    /// just the overall match.
    ///
    /// # Example
    ///
    /// Say you have some haystack with movie names and their release years,
    /// like "'Citizen Kane' (1941)". It'd be nice if we could search for
    /// substrings looking like that, while also extracting the movie name and
    /// its release year separately. The example below shows how to do that.
    ///
    /// ```
    /// use regex::Regex;
    ///
    /// let re = Regex::new(r"'([^']+)'\s+\((\d{4})\)").unwrap();
    /// let hay = "Not my favorite movie: 'Citizen Kane' (1941).";
    /// let caps = re.captures(hay).unwrap();
    /// assert_eq!(caps.get(0).unwrap().as_str(), "'Citizen Kane' (1941)");
    /// assert_eq!(caps.get(1).unwrap().as_str(), "Citizen Kane");
    /// assert_eq!(caps.get(2).unwrap().as_str(), "1941");
    /// // You can also access the groups by index using the Index notation.
    /// // Note that this will panic on an invalid index. In this case, these
    /// // accesses are always correct because the overall regex will only
    /// // match when these capture groups match.
    /// assert_eq!(&caps[0], "'Citizen Kane' (1941)");
    /// assert_eq!(&caps[1], "Citizen Kane");
    /// assert_eq!(&caps[2], "1941");
    /// ```
    ///
    /// Note that the full match is at capture group `0`. Each subsequent
    /// capture group is indexed by the order of its opening `(`.
    ///
    /// We can make this example a bit clearer by using *named* capture groups:
    ///
    /// ```
    /// use regex::Regex;
    ///
    /// let re = Regex::new(r"'(?<title>[^']+)'\s+\((?<year>\d{4})\)").unwrap();
    /// let hay = "Not my favorite movie: 'Citizen Kane' (1941).";
    /// let caps = re.captures(hay).unwrap();
    /// assert_eq!(caps.get(0).unwrap().as_str(), "'Citizen Kane' (1941)");
    /// assert_eq!(caps.name("title").unwrap().as_str(), "Citizen Kane");
    /// assert_eq!(caps.name("year").unwrap().as_str(), "1941");
    /// // You can also access the groups by name using the Index notation.
    /// // Note that this will panic on an invalid group name. In this case,
    /// // these accesses are always correct because the overall regex will
    /// // only match when these capture groups match.
    /// assert_eq!(&caps[0], "'Citizen Kane' (1941)");
    /// assert_eq!(&caps["title"], "Citizen Kane");
    /// assert_eq!(&caps["year"], "1941");
    /// ```
    ///
    /// Here we name the capture groups, which we can access with the `name`
    /// method or the `Index` notation with a `&str`. Note that the named
    /// capture groups are still accessible with `get` or the `Index` notation
    /// with a `usize`.
    ///
    /// The `0`th capture group is always unnamed, so it must always be
    /// accessed with `get(0)` or `[0]`.
    ///
    /// Finally, one other way to to get the matched substrings is with the
    /// [`Captures::extract`] API:
    ///
    /// ```
    /// use regex::Regex;
    ///
    /// let re = Regex::new(r"'([^']+)'\s+\((\d{4})\)").unwrap();
    /// let hay = "Not my favorite movie: 'Citizen Kane' (1941).";
    /// let (full, [title, year]) = re.captures(hay).unwrap().extract();
    /// assert_eq!(full, "'Citizen Kane' (1941)");
    /// assert_eq!(title, "Citizen Kane");
    /// assert_eq!(year, "1941");
    /// ```
    #[inline]
    pub fn captures<'h>(&self, haystack: &'h str) -> Option<Captures<'h>> {
        self.captures_at(haystack, 0)
    }

    /// Returns an iterator that yields successive non-overlapping matches in
    /// the given haystack. The iterator yields values of type [`Captures`].
    ///
    /// This is the same as [`Regex::find_iter`], but instead of only providing
    /// access to the overall match, each value yield includes access to the
    /// matches of all capture groups in the regex. Reporting this extra match
    /// data is potentially costly, so callers should only use `captures_iter`
    /// over `find_iter` when they actually need access to the capture group
    /// matches.
    ///
    /// # Time complexity
    ///
    /// Note that since `captures_iter` runs potentially many searches on the
    /// haystack and since each search has worst case `O(m * n)` time
    /// complexity, the overall worst case time complexity for iteration is
    /// `O(m * n^2)`.
    ///
    /// # Example
    ///
    /// We can use this to find all movie titles and their release years in
    /// some haystack, where the movie is formatted like "'Title' (xxxx)":
    ///
    /// ```
    /// use regex::Regex;
    ///
    /// let re = Regex::new(r"'([^']+)'\s+\(([0-9]{4})\)").unwrap();
    /// let hay = "'Citizen Kane' (1941), 'The Wizard of Oz' (1939), 'M' (1931).";
    /// let mut movies = vec![];
    /// for (_, [title, year]) in re.captures_iter(hay).map(|c| c.extract()) {
    ///     movies.push((title, year.parse::<i64>()?));
    /// }
    /// assert_eq!(movies, vec![
    ///     ("Citizen Kane", 1941),
    ///     ("The Wizard of Oz", 1939),
    ///     ("M", 1931),
    /// ]);
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    ///
    /// Or with named groups:
    ///
    /// ```
    /// use regex::Regex;
    ///
    /// let re = Regex::new(r"'(?<title>[^']+)'\s+\((?<year>[0-9]{4})\)").unwrap();
    /// let hay = "'Citizen Kane' (1941), 'The Wizard of Oz' (1939), 'M' (1931).";
    /// let mut it = re.captures_iter(hay);
    ///
    /// let caps = it.next().unwrap();
    /// assert_eq!(&caps["title"], "Citizen Kane");
    /// assert_eq!(&caps["year"], "1941");
    ///
    /// let caps = it.next().unwrap();
    /// assert_eq!(&caps["title"], "The Wizard of Oz");
    /// assert_eq!(&caps["year"], "1939");
    ///
    /// let caps = it.next().unwrap();
    /// assert_eq!(&caps["title"], "M");
    /// assert_eq!(&caps["year"], "1931");
    /// ```
    #[inline]
    pub fn captures_iter<'r, 'h>(
        &'r self,
        haystack: &'h str,
    ) -> CaptureMatches<'r, 'h> {
        CaptureMatches { haystack, it: self.meta.captures_iter(haystack) }
    }

    /// Returns an iterator of substrings of the haystack given, delimited by a
    /// match of the regex. Namely, each element of the iterator corresponds to
    /// a part of the haystack that *isn't* matched by the regular expression.
    ///
    /// # Time complexity
    ///
    /// Since iterators over all matches requires running potentially many
    /// searches on the haystack, and since each search has worst case
    /// `O(m * n)` time complexity, the overall worst case time complexity for
    /// this routine is `O(m * n^2)`.
    ///
    /// # Example
    ///
    /// To split a string delimited by arbitrary amounts of spaces or tabs:
    ///
    /// ```
    /// use regex::Regex;
    ///
    /// let re = Regex::new(r"[ \t]+").unwrap();
    /// let hay = "a b \t  c\td    e";
    /// let fields: Vec<&str> = re.split(hay).collect();
    /// assert_eq!(fields, vec!["a", "b", "c", "d", "e"]);
    /// ```
    ///
    /// # Example: more cases
    ///
    /// Basic usage:
    ///
    /// ```
    /// use regex::Regex;
    ///
    /// let re = Regex::new(r" ").unwrap();
    /// let hay = "Mary had a little lamb";
    /// let got: Vec<&str> = re.split(hay).collect();
    /// assert_eq!(got, vec!["Mary", "had", "a", "little", "lamb"]);
    ///
    /// let re = Regex::new(r"X").unwrap();
    /// let hay = "";
    /// let got: Vec<&str> = re.split(hay).collect();
    /// assert_eq!(got, vec![""]);
    ///
    /// let re = Regex::new(r"X").unwrap();
    /// let hay = "lionXXtigerXleopard";
    /// let got: Vec<&str> = re.split(hay).collect();
    /// assert_eq!(got, vec!["lion", "", "tiger", "leopard"]);
    ///
    /// let re = Regex::new(r"::").unwrap();
    /// let hay = "lion::tiger::leopard";
    /// let got: Vec<&str> = re.split(hay).collect();
    /// assert_eq!(got, vec!["lion", "tiger", "leopard"]);
    /// ```
    ///
    /// If a haystack contains multiple contiguous matches, you will end up
    /// with empty spans yielded by the iterator:
    ///
    /// ```
    /// use regex::Regex;
    ///
    /// let re = Regex::new(r"X").unwrap();
    /// let hay = "XXXXaXXbXc";
    /// let got: Vec<&str> = re.split(hay).collect();
    /// assert_eq!(got, vec!["", "", "", "", "a", "", "b", "c"]);
    ///
    /// let re = Regex::new(r"/").unwrap();
    /// let hay = "(///)";
    /// let got: Vec<&str> = re.split(hay).collect();
    /// assert_eq!(got, vec!["(", "", "", ")"]);
    /// ```
    ///
    /// Separators at the start or end of a haystack are neighbored by empty
    /// substring.
    ///
    /// ```
    /// use regex::Regex;
    ///
    /// let re = Regex::new(r"0").unwrap();
    /// let hay = "010";
    /// let got: Vec<&str> = re.split(hay).collect();
    /// assert_eq!(got, vec!["", "1", ""]);
    /// ```
    ///
    /// When the empty string is used as a regex, it splits at every valid
    /// UTF-8 boundary by default (which includes the beginning and end of the
    /// haystack):
    ///
    /// ```
    /// use regex::Regex;
    ///
    /// let re = Regex::new(r"").unwrap();
    /// let hay = "rust";
    /// let got: Vec<&str> = re.split(hay).collect();
    /// assert_eq!(got, vec!["", "r", "u", "s", "t", ""]);
    ///
    /// // Splitting by an empty string is UTF-8 aware by default!
    /// let re = Regex::new(r"").unwrap();
    /// let hay = "☃";
    /// let got: Vec<&str> = re.split(hay).collect();
    /// assert_eq!(got, vec!["", "☃", ""]);
    /// ```
    ///
    /// Contiguous separators (commonly shows up with whitespace), can lead to
    /// possibly surprising behavior. For example, this code is correct:
    ///
    /// ```
    /// use regex::Regex;
    ///
    /// let re = Regex::new(r" ").unwrap();
    /// let hay = "    a  b c";
    /// let got: Vec<&str> = re.split(hay).collect();
    /// assert_eq!(got, vec!["", "", "", "", "a", "", "b", "c"]);
    /// ```
    ///
    /// It does *not* give you `["a", "b", "c"]`. For that behavior, you'd want
    /// to match contiguous space characters:
    ///
    /// ```
    /// use regex::Regex;
    ///
    /// let re = Regex::new(r" +").unwrap();
    /// let hay = "    a  b c";
    /// let got: Vec<&str> = re.split(hay).collect();
    /// // N.B. This does still include a leading empty span because ' +'
    /// // matches at the beginning of the haystack.
    /// assert_eq!(got, vec!["", "a", "b", "c"]);
    /// ```
    #[inline]
    pub fn split<'r, 'h>(&'r self, haystack: &'h str) -> Split<'r, 'h> {
        Split { haystack, it: self.meta.split(haystack) }
    }

    /// Returns an iterator of at most `limit` substrings of the haystack
    /// given, delimited by a match of the regex. (A `limit` of `0` will return
    /// no substrings.) Namely, each element of the iterator corresponds to a
    /// part of the haystack that *isn't* matched by the regular expression.
    /// The remainder of the haystack that is not split will be the last
    /// element in the iterator.
    ///
    /// # Time complexity
    ///
    /// Since iterators over all matches requires running potentially many
    /// searches on the haystack, and since each search has worst case
    /// `O(m * n)` time complexity, the overall worst case time complexity for
    /// this routine is `O(m * n^2)`.
    ///
    /// Although note that the worst case time here has an upper bound given
    /// by the `limit` parameter.
    ///
    /// # Example
    ///
    /// Get the first two words in some haystack:
    ///
    /// ```
    /// use regex::Regex;
    ///
    /// let re = Regex::new(r"\W+").unwrap();
    /// let hay = "Hey! How are you?";
    /// let fields: Vec<&str> = re.splitn(hay, 3).collect();
    /// assert_eq!(fields, vec!["Hey", "How", "are you?"]);
    /// ```
    ///
    /// # Examples: more cases
    ///
    /// ```
    /// use regex::Regex;
    ///
    /// let re = Regex::new(r" ").unwrap();
    /// let hay = "Mary had a little lamb";
    /// let got: Vec<&str> = re.splitn(hay, 3).collect();
    /// assert_eq!(got, vec!["Mary", "had", "a little lamb"]);
    ///
    /// let re = Regex::new(r"X").unwrap();
    /// let hay = "";
    /// let got: Vec<&str> = re.splitn(hay, 3).collect();
    /// assert_eq!(got, vec![""]);
    ///
    /// let re = Regex::new(r"X").unwrap();
    /// let hay = "lionXXtigerXleopard";
    /// let got: Vec<&str> = re.splitn(hay, 3).collect();
    /// assert_eq!(got, vec!["lion", "", "tigerXleopard"]);
    ///
    /// let re = Regex::new(r"::").unwrap();
    /// let hay = "lion::tiger::leopard";
    /// let got: Vec<&str> = re.splitn(hay, 2).collect();
    /// assert_eq!(got, vec!["lion", "tiger::leopard"]);
    ///
    /// let re = Regex::new(r"X").unwrap();
    /// let hay = "abcXdef";
    /// let got: Vec<&str> = re.splitn(hay, 1).collect();
    /// assert_eq!(got, vec!["abcXdef"]);
    ///
    /// let re = Regex::new(r"X").unwrap();
    /// let hay = "abcdef";
    /// let got: Vec<&str> = re.splitn(hay, 2).collect();
    /// assert_eq!(got, vec!["abcdef"]);
    ///
    /// let re = Regex::new(r"X").unwrap();
    /// let hay = "abcXdef";
    /// let got: Vec<&str> = re.splitn(hay, 0).collect();
    /// assert!(got.is_empty());
    /// ```
    #[inline]
    pub fn splitn<'r, 'h>(
        &'r self,
        haystack: &'h str,
        limit: usize,
    ) -> SplitN<'r, 'h> {
        SplitN { haystack, it: self.meta.splitn(haystack, limit) }
    }

    /// Replaces the leftmost-first match in the given haystack with the
    /// replacement provided. The replacement can be a regular string (where
    /// `$N` and `$name` are expanded to match capture groups) or a function
    /// that takes a [`Captures`] and returns the replaced string.
    ///
    /// If no match is found, then the haystack is returned unchanged. In that
    /// case, this implementation will likely return a `Cow::Borrowed` value
    /// such that no allocation is performed.
    ///
    /// When a `Cow::Borrowed` is returned, the value returned is guaranteed
    /// to be equivalent to the `haystack` given.
    ///
    /// # Replacement string syntax
    ///
    /// All instances of `$ref` in the replacement string are replaced with
    /// the substring corresponding to the capture group identified by `ref`.
    ///
    /// `ref` may be an integer corresponding to the index of the capture group
    /// (counted by order of opening parenthesis where `0` is the entire match)
    /// or it can be a name (consisting of letters, digits or underscores)
    /// corresponding to a named capture group.
    ///
    /// If `ref` isn't a valid capture group (whether the name doesn't exist or
    /// isn't a valid index), then it is replaced with the empty string.
    ///
    /// The longest possible name is used. For example, `$1a` looks up the
    /// capture group named `1a` and not the capture group at index `1`. To
    /// exert more precise control over the name, use braces, e.g., `${1}a`.
    ///
    /// To write a literal `$` use `$$`.
    ///
    /// # Example
    ///
    /// Note that this function is polymorphic with respect to the replacement.
    /// In typical usage, this can just be a normal string:
    ///
    /// ```
    /// use regex::Regex;
    ///
    /// let re = Regex::new(r"[^01]+").unwrap();
    /// assert_eq!(re.replace("1078910", ""), "1010");
    /// ```
    ///
    /// But anything satisfying the [`Replacer`] trait will work. For example,
    /// a closure of type `|&Captures| -> String` provides direct access to the
    /// captures corresponding to a match. This allows one to access capturing
    /// group matches easily:
    ///
    /// ```
    /// use regex::{Captures, Regex};
    ///
    /// let re = Regex::new(r"([^,\s]+),\s+(\S+)").unwrap();
    /// let result = re.replace("Springsteen, Bruce", |caps: &Captures| {
    ///     format!("{} {}", &caps[2], &caps[1])
    /// });
    /// assert_eq!(result, "Bruce Springsteen");
    /// ```
    ///
    /// But this is a bit cumbersome to use all the time. Instead, a simple
    /// syntax is supported (as described above) that expands `$name` into the
    /// corresponding capture group. Here's the last example, but using this
    /// expansion technique with named capture groups:
    ///
    /// ```
    /// use regex::Regex;
    ///
    /// let re = Regex::new(r"(?<last>[^,\s]+),\s+(?<first>\S+)").unwrap();
    /// let result = re.replace("Springsteen, Bruce", "$first $last");
    /// assert_eq!(result, "Bruce Springsteen");
    /// ```
    ///
    /// Note that using `$2` instead of `$first` or `$1` instead of `$last`
    /// would produce the same result. To write a literal `$` use `$$`.
    ///
    /// Sometimes the replacement string requires use of curly braces to
    /// delineate a capture group replacement when it is adjacent to some other
    /// literal text. For example, if we wanted to join two words together with
    /// an underscore:
    ///
    /// ```
    /// use regex::Regex;
    ///
    /// let re = Regex::new(r"(?<first>\w+)\s+(?<second>\w+)").unwrap();
    /// let result = re.replace("deep fried", "${first}_$second");
    /// assert_eq!(result, "deep_fried");
    /// ```
    ///
    /// Without the curly braces, the capture group name `first_` would be
    /// used, and since it doesn't exist, it would be replaced with the empty
    /// string.
    ///
    /// Finally, sometimes you just want to replace a literal string with no
    /// regard for capturing group expansion. This can be done by wrapping a
    /// string with [`NoExpand`]:
    ///
    /// ```
    /// use regex::{NoExpand, Regex};
    ///
    /// let re = Regex::new(r"(?<last>[^,\s]+),\s+(\S+)").unwrap();
    /// let result = re.replace("Springsteen, Bruce", NoExpand("$2 $last"));
    /// assert_eq!(result, "$2 $last");
    /// ```
    ///
    /// Using `NoExpand` may also be faster, since the replacement string won't
    /// need to be parsed for the `$` syntax.
    #[inline]
    pub fn replace<'h, R: Replacer>(
        &self,
        haystack: &'h str,
        rep: R,
    ) -> Cow<'h, str> {
        self.replacen(haystack, 1, rep)
    }

    /// Replaces all non-overlapping matches in the haystack with the
    /// replacement provided. This is the same as calling `replacen` with
    /// `limit` set to `0`.
    ///
    /// If no match is found, then the haystack is returned unchanged. In that
    /// case, this implementation will likely return a `Cow::Borrowed` value
    /// such that no allocation is performed.
    ///
    /// When a `Cow::Borrowed` is returned, the value returned is guaranteed
    /// to be equivalent to the `haystack` given.
    ///
    /// The documentation for [`Regex::replace`] goes into more detail about
    /// what kinds of replacement strings are supported.
    ///
    /// # Time complexity
    ///
    /// Since iterators over all matches requires running potentially many
    /// searches on the haystack, and since each search has worst case
    /// `O(m * n)` time complexity, the overall worst case time complexity for
    /// this routine is `O(m * n^2)`.
    ///
    /// # Fallibility
    ///
    /// If you need to write a replacement routine where any individual
    /// replacement might "fail," doing so with this API isn't really feasible
    /// because there's no way to stop the search process if a replacement
    /// fails. Instead, if you need this functionality, you should consider
    /// implementing your own replacement routine:
    ///
    /// ```
    /// use regex::{Captures, Regex};
    ///
    /// fn replace_all<E>(
    ///     re: &Regex,
    ///     haystack: &str,
    ///     replacement: impl Fn(&Captures) -> Result<String, E>,
    /// ) -> Result<String, E> {
    ///     let mut new = String::with_capacity(haystack.len());
    ///     let mut last_match = 0;
    ///     for caps in re.captures_iter(haystack) {
    ///         let m = caps.get(0).unwrap();
    ///         new.push_str(&haystack[last_match..m.start()]);
    ///         new.push_str(&replacement(&caps)?);
    ///         last_match = m.end();
    ///     }
    ///     new.push_str(&haystack[last_match..]);
    ///     Ok(new)
    /// }
    ///
    /// // Let's replace each word with the number of bytes in that word.
    /// // But if we see a word that is "too long," we'll give up.
    /// let re = Regex::new(r"\w+").unwrap();
    /// let replacement = |caps: &Captures| -> Result<String, &'static str> {
    ///     if caps[0].len() >= 5 {
    ///         return Err("word too long");
    ///     }
    ///     Ok(caps[0].len().to_string())
    /// };
    /// assert_eq!(
    ///     Ok("2 3 3 3?".to_string()),
    ///     replace_all(&re, "hi how are you?", &replacement),
    /// );
    /// assert!(replace_all(&re, "hi there", &replacement).is_err());
    /// ```
    ///
    /// # Example
    ///
    /// This example shows how to flip the order of whitespace (excluding line
    /// terminators) delimited fields, and normalizes the whitespace that
    /// delimits the fields:
    ///
    /// ```
    /// use regex::Regex;
    ///
    /// let re = Regex::new(r"(?m)^(\S+)[\s--\r\n]+(\S+)$").unwrap();
    /// let hay = "
    /// Greetings  1973
    /// Wild\t1973
    /// BornToRun\t\t\t\t1975
    /// Darkness                    1978
    /// TheRiver 1980
    /// ";
    /// let new = re.replace_all(hay, "$2 $1");
    /// assert_eq!(new, "
    /// 1973 Greetings
    /// 1973 Wild
    /// 1975 BornToRun
    /// 1978 Darkness
    /// 1980 TheRiver
    /// ");
    /// ```
    #[inline]
    pub fn replace_all<'h, R: Replacer>(
        &self,
        haystack: &'h str,
        rep: R,
    ) -> Cow<'h, str> {
        self.replacen(haystack, 0, rep)
    }

    /// Replaces at most `limit` non-overlapping matches in the haystack with
    /// the replacement provided. If `limit` is `0`, then all non-overlapping
    /// matches are replaced. That is, `Regex::replace_all(hay, rep)` is
    /// equivalent to `Regex::replacen(hay, 0, rep)`.
    ///
    /// If no match is found, then the haystack is returned unchanged. In that
    /// case, this implementation will likely return a `Cow::Borrowed` value
    /// such that no allocation is performed.
    ///
    /// When a `Cow::Borrowed` is returned, the value returned is guaranteed
    /// to be equivalent to the `haystack` given.
    ///
    /// The documentation for [`Regex::replace`] goes into more detail about
    /// what kinds of replacement strings are supported.
    ///
    /// # Time complexity
    ///
    /// Since iterators over all matches requires running potentially many
    /// searches on the haystack, and since each search has worst case
    /// `O(m * n)` time complexity, the overall worst case time complexity for
    /// this routine is `O(m * n^2)`.
    ///
    /// Although note that the worst case time here has an upper bound given
    /// by the `limit` parameter.
    ///
    /// # Fallibility
    ///
    /// See the corresponding section in the docs for [`Regex::replace_all`]
    /// for tips on how to deal with a replacement routine that can fail.
    ///
    /// # Example
    ///
    /// This example shows how to flip the order of whitespace (excluding line
    /// terminators) delimited fields, and normalizes the whitespace that
    /// delimits the fields. But we only do it for the first two matches.
    ///
    /// ```
    /// use regex::Regex;
    ///
    /// let re = Regex::new(r"(?m)^(\S+)[\s--\r\n]+(\S+)$").unwrap();
    /// let hay = "
    /// Greetings  1973
    /// Wild\t1973
    /// BornToRun\t\t\t\t1975
    /// Darkness                    1978
    /// TheRiver 1980
    /// ";
    /// let new = re.replacen(hay, 2, "$2 $1");
    /// assert_eq!(new, "
    /// 1973 Greetings
    /// 1973 Wild
    /// BornToRun\t\t\t\t1975
    /// Darkness                    1978
    /// TheRiver 1980
    /// ");
    /// ```
    #[inline]
    pub fn replacen<'h, R: Replacer>(
        &self,
        haystack: &'h str,
        limit: usize,
        mut rep: R,
    ) -> Cow<'h, str> {
        // If we know that the replacement doesn't have any capture expansions,
        // then we can use the fast path. The fast path can make a tremendous
        // difference:
        //
        //   1) We use `find_iter` instead of `captures_iter`. Not asking for
        //      captures generally makes the regex engines faster.
        //   2) We don't need to look up all of the capture groups and do
        //      replacements inside the replacement string. We just push it
        //      at each match and be done with it.
        if let Some(rep) = rep.no_expansion() {
            let mut it = self.find_iter(haystack).enumerate().peekable();
            if it.peek().is_none() {
                return Cow::Borrowed(haystack);
            }
            let mut new = String::with_capacity(haystack.len());
            let mut last_match = 0;
            for (i, m) in it {
                new.push_str(&haystack[last_match..m.start()]);
                new.push_str(&rep);
                last_match = m.end();
                if limit > 0 && i >= limit - 1 {
                    break;
                }
            }
            new.push_str(&haystack[last_match..]);
            return Cow::Owned(new);
        }

        // The slower path, which we use if the replacement may need access to
        // capture groups.
        let mut it = self.captures_iter(haystack).enumerate().peekable();
        if it.peek().is_none() {
            return Cow::Borrowed(haystack);
        }
        let mut new = String::with_capacity(haystack.len());
        let mut last_match = 0;
        for (i, cap) in it {
            // unwrap on 0 is OK because captures only reports matches
            let m = cap.get(0).unwrap();
            new.push_str(&haystack[last_match..m.start()]);
            rep.replace_append(&cap, &mut new);
            last_match = m.end();
            if limit > 0 && i >= limit - 1 {
                break;
            }
        }
        new.push_str(&haystack[last_match..]);
        Cow::Owned(new)
    }
}

/// A group of advanced or "lower level" search methods. Some methods permit
/// starting the search at a position greater than `0` in the haystack. Other
/// methods permit reusing allocations, for example, when extracting the
/// matches for capture groups.
impl Regex {
    /// Returns the end byte offset of the first match in the haystack given.
    ///
    /// This method may have the same performance characteristics as
    /// `is_match`. Behaviorlly, it doesn't just report whether it match
    /// occurs, but also the end offset for a match. In particular, the offset
    /// returned *may be shorter* than the proper end of the leftmost-first
    /// match that you would find via [`Regex::find`].
    ///
    /// Note that it is not guaranteed that this routine finds the shortest or
    /// "earliest" possible match. Instead, the main idea of this API is that
    /// it returns the offset at the point at which the internal regex engine
    /// has determined that a match has occurred. This may vary depending on
    /// which internal regex engine is used, and thus, the offset itself may
    /// change based on internal heuristics.
    ///
    /// # Example
    ///
    /// Typically, `a+` would match the entire first sequence of `a` in some
    /// haystack, but `shortest_match` *may* give up as soon as it sees the
    /// first `a`.
    ///
    /// ```
    /// use regex::Regex;
    ///
    /// let re = Regex::new(r"a+").unwrap();
    /// let offset = re.shortest_match("aaaaa").unwrap();
    /// assert_eq!(offset, 1);
    /// ```
    #[inline]
    pub fn shortest_match(&self, haystack: &str) -> Option<usize> {
        self.shortest_match_at(haystack, 0)
    }

    /// Returns the same as [`Regex::shortest_match`], but starts the search at
    /// the given offset.
    ///
    /// The significance of the starting point is that it takes the surrounding
    /// context into consideration. For example, the `\A` anchor can only match
    /// when `start == 0`.
    ///
    /// If a match is found, the offset returned is relative to the beginning
    /// of the haystack, not the beginning of the search.
    ///
    /// # Panics
    ///
    /// This panics when `start >= haystack.len() + 1`.
    ///
    /// # Example
    ///
    /// This example shows the significance of `start` by demonstrating how it
    /// can be used to permit look-around assertions in a regex to take the
    /// surrounding context into account.
    ///
    /// ```
    /// use regex::Regex;
    ///
    /// let re = Regex::new(r"\bchew\b").unwrap();
    /// let hay = "eschew";
    /// // We get a match here, but it's probably not intended.
    /// assert_eq!(re.shortest_match(&hay[2..]), Some(4));
    /// // No match because the  assertions take the context into account.
    /// assert_eq!(re.shortest_match_at(hay, 2), None);
    /// ```
    #[inline]
    pub fn shortest_match_at(
        &self,
        haystack: &str,
        start: usize,
    ) -> Option<usize> {
        let input =
            Input::new(haystack).earliest(true).span(start..haystack.len());
        self.meta.search_half(&input).map(|hm| hm.offset())
    }

    /// Returns the same as [`Regex::is_match`], but starts the search at the
    /// given offset.
    ///
    /// The significance of the starting point is that it takes the surrounding
    /// context into consideration. For example, the `\A` anchor can only
    /// match when `start == 0`.
    ///
    /// # Panics
    ///
    /// This panics when `start >= haystack.len() + 1`.
    ///
    /// # Example
    ///
    /// This example shows the significance of `start` by demonstrating how it
    /// can be used to permit look-around assertions in a regex to take the
    /// surrounding context into account.
    ///
    /// ```
    /// use regex::Regex;
    ///
    /// let re = Regex::new(r"\bchew\b").unwrap();
    /// let hay = "eschew";
    /// // We get a match here, but it's probably not intended.
    /// assert!(re.is_match(&hay[2..]));
    /// // No match because the  assertions take the context into account.
    /// assert!(!re.is_match_at(hay, 2));
    /// ```
    #[inline]
    pub fn is_match_at(&self, haystack: &str, start: usize) -> bool {
        let input =
            Input::new(haystack).earliest(true).span(start..haystack.len());
        self.meta.search_half(&input).is_some()
    }

    /// Returns the same as [`Regex::find`], but starts the search at the given
    /// offset.
    ///
    /// The significance of the starting point is that it takes the surrounding
    /// context into consideration. For example, the `\A` anchor can only
    /// match when `start == 0`.
    ///
    /// # Panics
    ///
    /// This panics when `start >= haystack.len() + 1`.
    ///
    /// # Example
    ///
    /// This example shows the significance of `start` by demonstrating how it
    /// can be used to permit look-around assertions in a regex to take the
    /// surrounding context into account.
    ///
    /// ```
    /// use regex::Regex;
    ///
    /// let re = Regex::new(r"\bchew\b").unwrap();
    /// let hay = "eschew";
    /// // We get a match here, but it's probably not intended.
    /// assert_eq!(re.find(&hay[2..]).map(|m| m.range()), Some(0..4));
    /// // No match because the  assertions take the context into account.
    /// assert_eq!(re.find_at(hay, 2), None);
    /// ```
    #[inline]
    pub fn find_at<'h>(
        &self,
        haystack: &'h str,
        start: usize,
    ) -> Option<Match<'h>> {
        let input = Input::new(haystack).span(start..haystack.len());
        self.meta
            .search(&input)
            .map(|m| Match::new(haystack, m.start(), m.end()))
    }

    /// Returns the same as [`Regex::captures`], but starts the search at the
    /// given offset.
    ///
    /// The significance of the starting point is that it takes the surrounding
    /// context into consideration. For example, the `\A` anchor can only
    /// match when `start == 0`.
    ///
    /// # Panics
    ///
    /// This panics when `start >= haystack.len() + 1`.
    ///
    /// # Example
    ///
    /// This example shows the significance of `start` by demonstrating how it
    /// can be used to permit look-around assertions in a regex to take the
    /// surrounding context into account.
    ///
    /// ```
    /// use regex::Regex;
    ///
    /// let re = Regex::new(r"\bchew\b").unwrap();
    /// let hay = "eschew";
    /// // We get a match here, but it's probably not intended.
    /// assert_eq!(&re.captures(&hay[2..]).unwrap()[0], "chew");
    /// // No match because the  assertions take the context into account.
    /// assert!(re.captures_at(hay, 2).is_none());
    /// ```
    #[inline]
    pub fn captures_at<'h>(
        &self,
        haystack: &'h str,
        start: usize,
    ) -> Option<Captures<'h>> {
        let input = Input::new(haystack).span(start..haystack.len());
        let mut caps = self.meta.create_captures();
        self.meta.search_captures(&input, &mut caps);
        if caps.is_match() {
            let static_captures_len = self.static_captures_len();
            Some(Captures { haystack, caps, static_captures_len })
        } else {
            None
        }
    }

    /// This is like [`Regex::captures`], but writes the byte offsets of each
    /// capture group match into the locations given.
    ///
    /// A [`CaptureLocations`] stores the same byte offsets as a [`Captures`],
    /// but does *not* store a reference to the haystack. This makes its API
    /// a bit lower level and less convenient. But in exchange, callers
    /// may allocate their own `CaptureLocations` and reuse it for multiple
    /// searches. This may be helpful if allocating a `Captures` shows up in a
    /// profile as too costly.
    ///
    /// To create a `CaptureLocations` value, use the
    /// [`Regex::capture_locations`] method.
    ///
    /// This also returns the overall match if one was found. When a match is
    /// found, its offsets are also always stored in `locs` at index `0`.
    ///
    /// # Panics
    ///
    /// This routine may panic if the given `CaptureLocations` was not created
    /// by this regex.
    ///
    /// # Example
    ///
    /// ```
    /// use regex::Regex;
    ///
    /// let re = Regex::new(r"^([a-z]+)=(\S*)$").unwrap();
    /// let mut locs = re.capture_locations();
    /// assert!(re.captures_read(&mut locs, "id=foo123").is_some());
    /// assert_eq!(Some((0, 9)), locs.get(0));
    /// assert_eq!(Some((0, 2)), locs.get(1));
    /// assert_eq!(Some((3, 9)), locs.get(2));
    /// ```
    #[inline]
    pub fn captures_read<'h>(
        &self,
        locs: &mut CaptureLocations,
        haystack: &'h str,
    ) -> Option<Match<'h>> {
        self.captures_read_at(locs, haystack, 0)
    }

    /// Returns the same as [`Regex::captures_read`], but starts the search at
    /// the given offset.
    ///
    /// The significance of the starting point is that it takes the surrounding
    /// context into consideration. For example, the `\A` anchor can only
    /// match when `start == 0`.
    ///
    /// # Panics
    ///
    /// This panics when `start >= haystack.len() + 1`.
    ///
    /// This routine may also panic if the given `CaptureLocations` was not
    /// created by this regex.
    ///
    /// # Example
    ///
    /// This example shows the significance of `start` by demonstrating how it
    /// can be used to permit look-around assertions in a regex to take the
    /// surrounding context into account.
    ///
    /// ```
    /// use regex::Regex;
    ///
    /// let re = Regex::new(r"\bchew\b").unwrap();
    /// let hay = "eschew";
    /// let mut locs = re.capture_locations();
    /// // We get a match here, but it's probably not intended.
    /// assert!(re.captures_read(&mut locs, &hay[2..]).is_some());
    /// // No match because the  assertions take the context into account.
    /// assert!(re.captures_read_at(&mut locs, hay, 2).is_none());
    /// ```
    #[inline]
    pub fn captures_read_at<'h>(
        &self,
        locs: &mut CaptureLocations,
        haystack: &'h str,
        start: usize,
    ) -> Option<Match<'h>> {
        let input = Input::new(haystack).span(start..haystack.len());
        self.meta.search_captures(&input, &mut locs.0);
        locs.0.get_match().map(|m| Match::new(haystack, m.start(), m.end()))
    }

    /// An undocumented alias for `captures_read_at`.
    ///
    /// The `regex-capi` crate previously used this routine, so to avoid
    /// breaking that crate, we continue to provide the name as an undocumented
    /// alias.
    #[doc(hidden)]
    #[inline]
    pub fn read_captures_at<'h>(
        &self,
        locs: &mut CaptureLocations,
        haystack: &'h str,
        start: usize,
    ) -> Option<Match<'h>> {
        self.captures_read_at(locs, haystack, start)
    }
}

/// Auxiliary methods.
impl Regex {
    /// Returns the original string of this regex.
    ///
    /// # Example
    ///
    /// ```
    /// use regex::Regex;
    ///
    /// let re = Regex::new(r"foo\w+bar").unwrap();
    /// assert_eq!(re.as_str(), r"foo\w+bar");
    /// ```
    #[inline]
    pub fn as_str(&self) -> &str {
        &self.pattern
    }

    /// Returns an iterator over the capture names in this regex.
    ///
    /// The iterator returned yields elements of type `Option<&str>`. That is,
    /// the iterator yields values for all capture groups, even ones that are
    /// unnamed. The order of the groups corresponds to the order of the group's
    /// corresponding opening parenthesis.
    ///
    /// The first element of the iterator always yields the group corresponding
    /// to the overall match, and this group is always unnamed. Therefore, the
    /// iterator always yields at least one group.
    ///
    /// # Example
    ///
    /// This shows basic usage with a mix of named and unnamed capture groups:
    ///
    /// ```
    /// use regex::Regex;
    ///
    /// let re = Regex::new(r"(?<a>.(?<b>.))(.)(?:.)(?<c>.)").unwrap();
    /// let mut names = re.capture_names();
    /// assert_eq!(names.next(), Some(None));
    /// assert_eq!(names.next(), Some(Some("a")));
    /// assert_eq!(names.next(), Some(Some("b")));
    /// assert_eq!(names.next(), Some(None));
    /// // the '(?:.)' group is non-capturing and so doesn't appear here!
    /// assert_eq!(names.next(), Some(Some("c")));
    /// assert_eq!(names.next(), None);
    /// ```
    ///
    /// The iterator always yields at least one element, even for regexes with
    /// no capture groups and even for regexes that can never match:
    ///
    /// ```
    /// use regex::Regex;
    ///
    /// let re = Regex::new(r"").unwrap();
    /// let mut names = re.capture_names();
    /// assert_eq!(names.next(), Some(None));
    /// assert_eq!(names.next(), None);
    ///
    /// let re = Regex::new(r"[a&&b]").unwrap();
    /// let mut names = re.capture_names();
    /// assert_eq!(names.next(), Some(None));
    /// assert_eq!(names.next(), None);
    /// ```
    #[inline]
    pub fn capture_names(&self) -> CaptureNames<'_> {
        CaptureNames(self.meta.group_info().pattern_names(PatternID::ZERO))
    }

    /// Returns the number of captures groups in this regex.
    ///
    /// This includes all named and unnamed groups, including the implicit
    /// unnamed group that is always present and corresponds to the entire
    /// match.
    ///
    /// Since the implicit unnamed group is always included in this length, the
    /// length returned is guaranteed to be greater than zero.
    ///
    /// # Example
    ///
    /// ```
    /// use regex::Regex;
    ///
    /// let re = Regex::new(r"foo").unwrap();
    /// assert_eq!(1, re.captures_len());
    ///
    /// let re = Regex::new(r"(foo)").unwrap();
    /// assert_eq!(2, re.captures_len());
    ///
    /// let re = Regex::new(r"(?<a>.(?<b>.))(.)(?:.)(?<c>.)").unwrap();
    /// assert_eq!(5, re.captures_len());
    ///
    /// let re = Regex::new(r"[a&&b]").unwrap();
    /// assert_eq!(1, re.captures_len());
    /// ```
    #[inline]
    pub fn captures_len(&self) -> usize {
        self.meta.group_info().group_len(PatternID::ZERO)
    }

    /// Returns the total number of capturing groups that appear in every
    /// possible match.
    ///
    /// If the number of capture groups can vary depending on the match, then
    /// this returns `None`. That is, a value is only returned when the number
    /// of matching groups is invariant or "static."
    ///
    /// Note that like [`Regex::captures_len`], this **does** include the
    /// implicit capturing group corresponding to the entire match. Therefore,
    /// when a non-None value is returned, it is guaranteed to be at least `1`.
    /// Stated differently, a return value of `Some(0)` is impossible.
    ///
    /// # Example
    ///
    /// This shows a few cases where a static number of capture groups is
    /// available and a few cases where it is not.
    ///
    /// ```
    /// use regex::Regex;
    ///
    /// let len = |pattern| {
    ///     Regex::new(pattern).map(|re| re.static_captures_len())
    /// };
    ///
    /// assert_eq!(Some(1), len("a")?);
    /// assert_eq!(Some(2), len("(a)")?);
    /// assert_eq!(Some(2), len("(a)|(b)")?);
    /// assert_eq!(Some(3), len("(a)(b)|(c)(d)")?);
    /// assert_eq!(None, len("(a)|b")?);
    /// assert_eq!(None, len("a|(b)")?);
    /// assert_eq!(None, len("(b)*")?);
    /// assert_eq!(Some(2), len("(b)+")?);
    ///
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    #[inline]
    pub fn static_captures_len(&self) -> Option<usize> {
        self.meta.static_captures_len()
    }

    /// Returns a fresh allocated set of capture locations that can
    /// be reused in multiple calls to [`Regex::captures_read`] or
    /// [`Regex::captures_read_at`].
    ///
    /// The returned locations can be used for any subsequent search for this
    /// particular regex. There is no guarantee that it is correct to use for
    /// other regexes, even if they have the same number of capture groups.
    ///
    /// # Example
    ///
    /// ```
    /// use regex::Regex;
    ///
    /// let re = Regex::new(r"(.)(.)(\w+)").unwrap();
    /// let mut locs = re.capture_locations();
    /// assert!(re.captures_read(&mut locs, "Padron").is_some());
    /// assert_eq!(locs.get(0), Some((0, 6)));
    /// assert_eq!(locs.get(1), Some((0, 1)));
    /// assert_eq!(locs.get(2), Some((1, 2)));
    /// assert_eq!(locs.get(3), Some((2, 6)));
    /// ```
    #[inline]
    pub fn capture_locations(&self) -> CaptureLocations {
        CaptureLocations(self.meta.create_captures())
    }

    /// An alias for `capture_locations` to preserve backward compatibility.
    ///
    /// The `regex-capi` crate used this method, so to avoid breaking that
    /// crate, we continue to export it as an undocumented API.
    #[doc(hidden)]
    #[inline]
    pub fn locations(&self) -> CaptureLocations {
        self.capture_locations()
    }
}

/// Represents a single match of a regex in a haystack.
///
/// A `Match` contains both the start and end byte offsets of the match and the
/// actual substring corresponding to the range of those byte offsets. It is
/// guaranteed that `start <= end`. When `start == end`, the match is empty.
///
/// Since this `Match` can only be produced by the top-level `Regex` APIs
/// that only support searching UTF-8 encoded strings, the byte offsets for a
/// `Match` are guaranteed to fall on valid UTF-8 codepoint boundaries. That
/// is, slicing a `&str` with [`Match::range`] is guaranteed to never panic.
///
/// Values with this type are created by [`Regex::find`] or
/// [`Regex::find_iter`]. Other APIs can create `Match` values too. For
/// example, [`Captures::get`].
///
/// The lifetime parameter `'h` refers to the lifetime of the matched of the
/// haystack that this match was produced from.
///
/// # Numbering
///
/// The byte offsets in a `Match` form a half-open interval. That is, the
/// start of the range is inclusive and the end of the range is exclusive.
/// For example, given a haystack `abcFOOxyz` and a match of `FOO`, its byte
/// offset range starts at `3` and ends at `6`. `3` corresponds to `F` and
/// `6` corresponds to `x`, which is one past the end of the match. This
/// corresponds to the same kind of slicing that Rust uses.
///
/// For more on why this was chosen over other schemes (aside from being
/// consistent with how Rust the language works), see [this discussion] and
/// [Dijkstra's note on a related topic][note].
///
/// [this discussion]: https://github.com/rust-lang/regex/discussions/866
/// [note]: https://www.cs.utexas.edu/users/EWD/transcriptions/EWD08xx/EWD831.html
///
/// # Example
///
/// This example shows the value of each of the methods on `Match` for a
/// particular search.
///
/// ```
/// use regex::Regex;
///
/// let re = Regex::new(r"\p{Greek}+").unwrap();
/// let hay = "Greek: αβγδ";
/// let m = re.find(hay).unwrap();
/// assert_eq!(7, m.start());
/// assert_eq!(15, m.end());
/// assert!(!m.is_empty());
/// assert_eq!(8, m.len());
/// assert_eq!(7..15, m.range());
/// assert_eq!("αβγδ", m.as_str());
/// ```
#[derive(Copy, Clone, Eq, PartialEq)]
pub struct Match<'h> {
    haystack: &'h str,
    start: usize,
    end: usize,
}

impl<'h> Match<'h> {
    /// Returns the byte offset of the start of the match in the haystack. The
    /// start of the match corresponds to the position where the match begins
    /// and includes the first byte in the match.
    ///
    /// It is guaranteed that `Match::start() <= Match::end()`.
    ///
    /// This is guaranteed to fall on a valid UTF-8 codepoint boundary. That
    /// is, it will never be an offset that appears between the UTF-8 code
    /// units of a UTF-8 encoded Unicode scalar value. Consequently, it is
    /// always safe to slice the corresponding haystack using this offset.
    #[inline]
    pub fn start(&self) -> usize {
        self.start
    }

    /// Returns the byte offset of the end of the match in the haystack. The
    /// end of the match corresponds to the byte immediately following the last
    /// byte in the match. This means that `&slice[start..end]` works as one
    /// would expect.
    ///
    /// It is guaranteed that `Match::start() <= Match::end()`.
    ///
    /// This is guaranteed to fall on a valid UTF-8 codepoint boundary. That
    /// is, it will never be an offset that appears between the UTF-8 code
    /// units of a UTF-8 encoded Unicode scalar value. Consequently, it is
    /// always safe to slice the corresponding haystack using this offset.
    #[inline]
    pub fn end(&self) -> usize {
        self.end
    }

    /// Returns true if and only if this match has a length of zero.
    ///
    /// Note that an empty match can only occur when the regex itself can
    /// match the empty string. Here are some examples of regexes that can
    /// all match the empty string: `^`, `^$`, `\b`, `a?`, `a*`, `a{0}`,
    /// `(foo|\d+|quux)?`.
    #[inline]
    pub fn is_empty(&self) -> bool {
        self.start == self.end
    }

    /// Returns the length, in bytes, of this match.
    #[inline]
    pub fn len(&self) -> usize {
        self.end - self.start
    }

    /// Returns the range over the starting and ending byte offsets of the
    /// match in the haystack.
    ///
    /// It is always correct to slice the original haystack searched with this
    /// range. That is, because the offsets are guaranteed to fall on valid
    /// UTF-8 boundaries, the range returned is always valid.
    #[inline]
    pub fn range(&self) -> core::ops::Range<usize> {
        self.start..self.end
    }

    /// Returns the substring of the haystack that matched.
    #[inline]
    pub fn as_str(&self) -> &'h str {
        &self.haystack[self.range()]
    }

    /// Creates a new match from the given haystack and byte offsets.
    #[inline]
    fn new(haystack: &'h str, start: usize, end: usize) -> Match<'h> {
        Match { haystack, start, end }
    }
}

impl<'h> core::fmt::Debug for Match<'h> {
    fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
        f.debug_struct("Match")
            .field("start", &self.start)
            .field("end", &self.end)
            .field("string", &self.as_str())
            .finish()
    }
}

impl<'h> From<Match<'h>> for &'h str {
    fn from(m: Match<'h>) -> &'h str {
        m.as_str()
    }
}

impl<'h> From<Match<'h>> for core::ops::Range<usize> {
    fn from(m: Match<'h>) -> core::ops::Range<usize> {
        m.range()
    }
}

/// Represents the capture groups for a single match.
///
/// Capture groups refer to parts of a regex enclosed in parentheses. They
/// can be optionally named. The purpose of capture groups is to be able to
/// reference different parts of a match based on the original pattern. In
/// essence, a `Captures` is a container of [`Match`] values for each group
/// that participated in a regex match. Each `Match` can be looked up by either
/// its capture group index or name (if it has one).
///
/// For example, say you want to match the individual letters in a 5-letter
/// word:
///
/// ```text
/// (?<first>\w)(\w)(?:\w)\w(?<last>\w)
/// ```
///
/// This regex has 4 capture groups:
///
/// * The group at index `0` corresponds to the overall match. It is always
/// present in every match and never has a name.
/// * The group at index `1` with name `first` corresponding to the first
/// letter.
/// * The group at index `2` with no name corresponding to the second letter.
/// * The group at index `3` with name `last` corresponding to the fifth and
/// last letter.
///
/// Notice that `(?:\w)` was not listed above as a capture group despite it
/// being enclosed in parentheses. That's because `(?:pattern)` is a special
/// syntax that permits grouping but *without* capturing. The reason for not
/// treating it as a capture is that tracking and reporting capture groups
/// requires additional state that may lead to slower searches. So using as few
/// capture groups as possible can help performance. (Although the difference
/// in performance of a couple of capture groups is likely immaterial.)
///
/// Values with this type are created by [`Regex::captures`] or
/// [`Regex::captures_iter`].
///
/// `'h` is the lifetime of the haystack that these captures were matched from.
///
/// # Example
///
/// ```
/// use regex::Regex;
///
/// let re = Regex::new(r"(?<first>\w)(\w)(?:\w)\w(?<last>\w)").unwrap();
/// let caps = re.captures("toady").unwrap();
/// assert_eq!("toady", &caps[0]);
/// assert_eq!("t", &caps["first"]);
/// assert_eq!("o", &caps[2]);
/// assert_eq!("y", &caps["last"]);
/// ```
pub struct Captures<'h> {
    haystack: &'h str,
    caps: captures::Captures,
    static_captures_len: Option<usize>,
}

impl<'h> Captures<'h> {
    /// Returns the `Match` associated with the capture group at index `i`. If
    /// `i` does not correspond to a capture group, or if the capture group did
    /// not participate in the match, then `None` is returned.
    ///
    /// When `i == 0`, this is guaranteed to return a non-`None` value.
    ///
    /// # Examples
    ///
    /// Get the substring that matched with a default of an empty string if the
    /// group didn't participate in the match:
    ///
    /// ```
    /// use regex::Regex;
    ///
    /// let re = Regex::new(r"[a-z]+(?:([0-9]+)|([A-Z]+))").unwrap();
    /// let caps = re.captures("abc123").unwrap();
    ///
    /// let substr1 = caps.get(1).map_or("", |m| m.as_str());
    /// let substr2 = caps.get(2).map_or("", |m| m.as_str());
    /// assert_eq!(substr1, "123");
    /// assert_eq!(substr2, "");
    /// ```
    #[inline]
    pub fn get(&self, i: usize) -> Option<Match<'h>> {
        self.caps
            .get_group(i)
            .map(|sp| Match::new(self.haystack, sp.start, sp.end))
    }

    /// Returns the `Match` associated with the capture group named `name`. If
    /// `name` isn't a valid capture group or it refers to a group that didn't
    /// match, then `None` is returned.
    ///
    /// Note that unlike `caps["name"]`, this returns a `Match` whose lifetime
    /// matches the lifetime of the haystack in this `Captures` value.
    /// Conversely, the substring returned by `caps["name"]` has a lifetime
    /// of the `Captures` value, which is likely shorter than the lifetime of
    /// the haystack. In some cases, it may be necessary to use this method to
    /// access the matching substring instead of the `caps["name"]` notation.
    ///
    /// # Examples
    ///
    /// Get the substring that matched with a default of an empty string if the
    /// group didn't participate in the match:
    ///
    /// ```
    /// use regex::Regex;
    ///
    /// let re = Regex::new(
    ///     r"[a-z]+(?:(?<numbers>[0-9]+)|(?<letters>[A-Z]+))",
    /// ).unwrap();
    /// let caps = re.captures("abc123").unwrap();
    ///
    /// let numbers = caps.name("numbers").map_or("", |m| m.as_str());
    /// let letters = caps.name("letters").map_or("", |m| m.as_str());
    /// assert_eq!(numbers, "123");
    /// assert_eq!(letters, "");
    /// ```
    #[inline]
    pub fn name(&self, name: &str) -> Option<Match<'h>> {
        self.caps
            .get_group_by_name(name)
            .map(|sp| Match::new(self.haystack, sp.start, sp.end))
    }

    /// This is a convenience routine for extracting the substrings
    /// corresponding to matching capture groups.
    ///
    /// This returns a tuple where the first element corresponds to the full
    /// substring of the haystack that matched the regex. The second element is
    /// an array of substrings, with each corresponding to the to the substring
    /// that matched for a particular capture group.
    ///
    /// # Panics
    ///
    /// This panics if the number of possible matching groups in this
    /// `Captures` value is not fixed to `N` in all circumstances.
    /// More precisely, this routine only works when `N` is equivalent to
    /// [`Regex::static_captures_len`].
    ///
    /// Stated more plainly, if the number of matching capture groups in a
    /// regex can vary from match to match, then this function always panics.
    ///
    /// For example, `(a)(b)|(c)` could produce two matching capture groups
    /// or one matching capture group for any given match. Therefore, one
    /// cannot use `extract` with such a pattern.
    ///
    /// But a pattern like `(a)(b)|(c)(d)` can be used with `extract` because
    /// the number of capture groups in every match is always equivalent,
    /// even if the capture _indices_ in each match are not.
    ///
    /// # Example
    ///
    /// ```
    /// use regex::Regex;
    ///
    /// let re = Regex::new(r"([0-9]{4})-([0-9]{2})-([0-9]{2})").unwrap();
    /// let hay = "On 2010-03-14, I became a Tenneessee lamb.";
    /// let Some((full, [year, month, day])) =
    ///     re.captures(hay).map(|caps| caps.extract()) else { return };
    /// assert_eq!("2010-03-14", full);
    /// assert_eq!("2010", year);
    /// assert_eq!("03", month);
    /// assert_eq!("14", day);
    /// ```
    ///
    /// # Example: iteration
    ///
    /// This example shows how to use this method when iterating over all
    /// `Captures` matches in a haystack.
    ///
    /// ```
    /// use regex::Regex;
    ///
    /// let re = Regex::new(r"([0-9]{4})-([0-9]{2})-([0-9]{2})").unwrap();
    /// let hay = "1973-01-05, 1975-08-25 and 1980-10-18";
    ///
    /// let mut dates: Vec<(&str, &str, &str)> = vec![];
    /// for (_, [y, m, d]) in re.captures_iter(hay).map(|c| c.extract()) {
    ///     dates.push((y, m, d));
    /// }
    /// assert_eq!(dates, vec![
    ///     ("1973", "01", "05"),
    ///     ("1975", "08", "25"),
    ///     ("1980", "10", "18"),
    /// ]);
    /// ```
    ///
    /// # Example: parsing different formats
    ///
    /// This API is particularly useful when you need to extract a particular
    /// value that might occur in a different format. Consider, for example,
    /// an identifier that might be in double quotes or single quotes:
    ///
    /// ```
    /// use regex::Regex;
    ///
    /// let re = Regex::new(r#"id:(?:"([^"]+)"|'([^']+)')"#).unwrap();
    /// let hay = r#"The first is id:"foo" and the second is id:'bar'."#;
    /// let mut ids = vec![];
    /// for (_, [id]) in re.captures_iter(hay).map(|c| c.extract()) {
    ///     ids.push(id);
    /// }
    /// assert_eq!(ids, vec!["foo", "bar"]);
    /// ```
    pub fn extract<const N: usize>(&self) -> (&'h str, [&'h str; N]) {
        let len = self
            .static_captures_len
            .expect("number of capture groups can vary in a match")
            .checked_sub(1)
            .expect("number of groups is always greater than zero");
        assert_eq!(N, len, "asked for {} groups, but must ask for {}", N, len);
        // The regex-automata variant of extract is a bit more permissive.
        // It doesn't require the number of matching capturing groups to be
        // static, and you can even request fewer groups than what's there. So
        // this is guaranteed to never panic because we've asserted above that
        // the user has requested precisely the number of groups that must be
        // present in any match for this regex.
        self.caps.extract(self.haystack)
    }

    /// Expands all instances of `$ref` in `replacement` to the corresponding
    /// capture group, and writes them to the `dst` buffer given. A `ref` can
    /// be a capture group index or a name. If `ref` doesn't refer to a capture
    /// group that participated in the match, then it is replaced with the
    /// empty string.
    ///
    /// # Format
    ///
    /// The format of the replacement string supports two different kinds of
    /// capture references: unbraced and braced.
    ///
    /// For the unbraced format, the format supported is `$ref` where `name`
    /// can be any character in the class `[0-9A-Za-z_]`. `ref` is always
    /// the longest possible parse. So for example, `$1a` corresponds to the
    /// capture group named `1a` and not the capture group at index `1`. If
    /// `ref` matches `^[0-9]+$`, then it is treated as a capture group index
    /// itself and not a name.
    ///
    /// For the braced format, the format supported is `${ref}` where `ref` can
    /// be any sequence of bytes except for `}`. If no closing brace occurs,
    /// then it is not considered a capture reference. As with the unbraced
    /// format, if `ref` matches `^[0-9]+$`, then it is treated as a capture
    /// group index and not a name.
    ///
    /// The braced format is useful for exerting precise control over the name
    /// of the capture reference. For example, `${1}a` corresponds to the
    /// capture group reference `1` followed by the letter `a`, where as `$1a`
    /// (as mentioned above) corresponds to the capture group reference `1a`.
    /// The braced format is also useful for expressing capture group names
    /// that use characters not supported by the unbraced format. For example,
    /// `${foo[bar].baz}` refers to the capture group named `foo[bar].baz`.
    ///
    /// If a capture group reference is found and it does not refer to a valid
    /// capture group, then it will be replaced with the empty string.
    ///
    /// To write a literal `$`, use `$$`.
    ///
    /// # Example
    ///
    /// ```
    /// use regex::Regex;
    ///
    /// let re = Regex::new(
    ///     r"(?<day>[0-9]{2})-(?<month>[0-9]{2})-(?<year>[0-9]{4})",
    /// ).unwrap();
    /// let hay = "On 14-03-2010, I became a Tenneessee lamb.";
    /// let caps = re.captures(hay).unwrap();
    ///
    /// let mut dst = String::new();
    /// caps.expand("year=$year, month=$month, day=$day", &mut dst);
    /// assert_eq!(dst, "year=2010, month=03, day=14");
    /// ```
    #[inline]
    pub fn expand(&self, replacement: &str, dst: &mut String) {
        self.caps.interpolate_string_into(self.haystack, replacement, dst);
    }

    /// Returns an iterator over all capture groups. This includes both
    /// matching and non-matching groups.
    ///
    /// The iterator always yields at least one matching group: the first group
    /// (at index `0`) with no name. Subsequent groups are returned in the order
    /// of their opening parenthesis in the regex.
    ///
    /// The elements yielded have type `Option<Match<'h>>`, where a non-`None`
    /// value is present if the capture group matches.
    ///
    /// # Example
    ///
    /// ```
    /// use regex::Regex;
    ///
    /// let re = Regex::new(r"(\w)(\d)?(\w)").unwrap();
    /// let caps = re.captures("AZ").unwrap();
    ///
    /// let mut it = caps.iter();
    /// assert_eq!(it.next().unwrap().map(|m| m.as_str()), Some("AZ"));
    /// assert_eq!(it.next().unwrap().map(|m| m.as_str()), Some("A"));
    /// assert_eq!(it.next().unwrap().map(|m| m.as_str()), None);
    /// assert_eq!(it.next().unwrap().map(|m| m.as_str()), Some("Z"));
    /// assert_eq!(it.next(), None);
    /// ```
    #[inline]
    pub fn iter<'c>(&'c self) -> SubCaptureMatches<'c, 'h> {
        SubCaptureMatches { haystack: self.haystack, it: self.caps.iter() }
    }

    /// Returns the total number of capture groups. This includes both
    /// matching and non-matching groups.
    ///
    /// The length returned is always equivalent to the number of elements
    /// yielded by [`Captures::iter`]. Consequently, the length is always
    /// greater than zero since every `Captures` value always includes the
    /// match for the entire regex.
    ///
    /// # Example
    ///
    /// ```
    /// use regex::Regex;
    ///
    /// let re = Regex::new(r"(\w)(\d)?(\w)").unwrap();
    /// let caps = re.captures("AZ").unwrap();
    /// assert_eq!(caps.len(), 4);
    /// ```
    #[inline]
    pub fn len(&self) -> usize {
        self.caps.group_len()
    }
}

impl<'h> core::fmt::Debug for Captures<'h> {
    fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
        /// A little helper type to provide a nice map-like debug
        /// representation for our capturing group spans.
        ///
        /// regex-automata has something similar, but it includes the pattern
        /// ID in its debug output, which is confusing. It also doesn't include
        /// that strings that match because a regex-automata `Captures` doesn't
        /// borrow the haystack.
        struct CapturesDebugMap<'a> {
            caps: &'a Captures<'a>,
        }

        impl<'a> core::fmt::Debug for CapturesDebugMap<'a> {
            fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
                let mut map = f.debug_map();
                let names =
                    self.caps.caps.group_info().pattern_names(PatternID::ZERO);
                for (group_index, maybe_name) in names.enumerate() {
                    let key = Key(group_index, maybe_name);
                    match self.caps.get(group_index) {
                        None => map.entry(&key, &None::<()>),
                        Some(mat) => map.entry(&key, &Value(mat)),
                    };
                }
                map.finish()
            }
        }

        struct Key<'a>(usize, Option<&'a str>);

        impl<'a> core::fmt::Debug for Key<'a> {
            fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
                write!(f, "{}", self.0)?;
                if let Some(name) = self.1 {
                    write!(f, "/{:?}", name)?;
                }
                Ok(())
            }
        }

        struct Value<'a>(Match<'a>);

        impl<'a> core::fmt::Debug for Value<'a> {
            fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
                write!(
                    f,
                    "{}..{}/{:?}",
                    self.0.start(),
                    self.0.end(),
                    self.0.as_str()
                )
            }
        }

        f.debug_tuple("Captures")
            .field(&CapturesDebugMap { caps: self })
            .finish()
    }
}

/// Get a matching capture group's haystack substring by index.
///
/// The haystack substring returned can't outlive the `Captures` object if this
/// method is used, because of how `Index` is defined (normally `a[i]` is part
/// of `a` and can't outlive it). To work around this limitation, do that, use
/// [`Captures::get`] instead.
///
/// `'h` is the lifetime of the matched haystack, but the lifetime of the
/// `&str` returned by this implementation is the lifetime of the `Captures`
/// value itself.
///
/// # Panics
///
/// If there is no matching group at the given index.
impl<'h> core::ops::Index<usize> for Captures<'h> {
    type Output = str;

    // The lifetime is written out to make it clear that the &str returned
    // does NOT have a lifetime equivalent to 'h.
    fn index<'a>(&'a self, i: usize) -> &'a str {
        self.get(i)
            .map(|m| m.as_str())
            .unwrap_or_else(|| panic!("no group at index '{}'", i))
    }
}

/// Get a matching capture group's haystack substring by name.
///
/// The haystack substring returned can't outlive the `Captures` object if this
/// method is used, because of how `Index` is defined (normally `a[i]` is part
/// of `a` and can't outlive it). To work around this limitation, do that, use
/// [`Captures::name`] instead.
///
/// `'h` is the lifetime of the matched haystack, but the lifetime of the
/// `&str` returned by this implementation is the lifetime of the `Captures`
/// value itself.
///
/// `'n` is the lifetime of the group name used to index the `Captures` value.
///
/// # Panics
///
/// If there is no matching group at the given name.
impl<'h, 'n> core::ops::Index<&'n str> for Captures<'h> {
    type Output = str;

    fn index<'a>(&'a self, name: &'n str) -> &'a str {
        self.name(name)
            .map(|m| m.as_str())
            .unwrap_or_else(|| panic!("no group named '{}'", name))
    }
}

/// A low level representation of the byte offsets of each capture group.
///
/// You can think of this as a lower level [`Captures`], where this type does
/// not support named capturing groups directly and it does not borrow the
/// haystack that these offsets were matched on.
///
/// Primarily, this type is useful when using the lower level `Regex` APIs such
/// as [`Regex::captures_read`], which permits amortizing the allocation in
/// which capture match offsets are stored.
///
/// In order to build a value of this type, you'll need to call the
/// [`Regex::capture_locations`] method. The value returned can then be reused
/// in subsequent searches for that regex. Using it for other regexes may
/// result in a panic or otherwise incorrect results.
///
/// # Example
///
/// This example shows how to create and use `CaptureLocations` in a search.
///
/// ```
/// use regex::Regex;
///
/// let re = Regex::new(r"(?<first>\w+)\s+(?<last>\w+)").unwrap();
/// let mut locs = re.capture_locations();
/// let m = re.captures_read(&mut locs, "Bruce Springsteen").unwrap();
/// assert_eq!(0..17, m.range());
/// assert_eq!(Some((0, 17)), locs.get(0));
/// assert_eq!(Some((0, 5)), locs.get(1));
/// assert_eq!(Some((6, 17)), locs.get(2));
///
/// // Asking for an invalid capture group always returns None.
/// assert_eq!(None, locs.get(3));
/// # // literals are too big for 32-bit usize: #1041
/// # #[cfg(target_pointer_width = "64")]
/// assert_eq!(None, locs.get(34973498648));
/// # #[cfg(target_pointer_width = "64")]
/// assert_eq!(None, locs.get(9944060567225171988));
/// ```
#[derive(Clone, Debug)]
pub struct CaptureLocations(captures::Captures);

/// A type alias for `CaptureLocations` for backwards compatibility.
///
/// Previously, we exported `CaptureLocations` as `Locations` in an
/// undocumented API. To prevent breaking that code (e.g., in `regex-capi`),
/// we continue re-exporting the same undocumented API.
#[doc(hidden)]
pub type Locations = CaptureLocations;

impl CaptureLocations {
    /// Returns the start and end byte offsets of the capture group at index
    /// `i`. This returns `None` if `i` is not a valid capture group or if the
    /// capture group did not match.
    ///
    /// # Example
    ///
    /// ```
    /// use regex::Regex;
    ///
    /// let re = Regex::new(r"(?<first>\w+)\s+(?<last>\w+)").unwrap();
    /// let mut locs = re.capture_locations();
    /// re.captures_read(&mut locs, "Bruce Springsteen").unwrap();
    /// assert_eq!(Some((0, 17)), locs.get(0));
    /// assert_eq!(Some((0, 5)), locs.get(1));
    /// assert_eq!(Some((6, 17)), locs.get(2));
    /// ```
    #[inline]
    pub fn get(&self, i: usize) -> Option<(usize, usize)> {
        self.0.get_group(i).map(|sp| (sp.start, sp.end))
    }

    /// Returns the total number of capture groups (even if they didn't match).
    /// That is, the length returned is unaffected by the result of a search.
    ///
    /// This is always at least `1` since every regex has at least `1`
    /// capturing group that corresponds to the entire match.
    ///
    /// # Example
    ///
    /// ```
    /// use regex::Regex;
    ///
    /// let re = Regex::new(r"(?<first>\w+)\s+(?<last>\w+)").unwrap();
    /// let mut locs = re.capture_locations();
    /// assert_eq!(3, locs.len());
    /// re.captures_read(&mut locs, "Bruce Springsteen").unwrap();
    /// assert_eq!(3, locs.len());
    /// ```
    ///
    /// Notice that the length is always at least `1`, regardless of the regex:
    ///
    /// ```
    /// use regex::Regex;
    ///
    /// let re = Regex::new(r"").unwrap();
    /// let locs = re.capture_locations();
    /// assert_eq!(1, locs.len());
    ///
    /// // [a&&b] is a regex that never matches anything.
    /// let re = Regex::new(r"[a&&b]").unwrap();
    /// let locs = re.capture_locations();
    /// assert_eq!(1, locs.len());
    /// ```
    #[inline]
    pub fn len(&self) -> usize {
        // self.0.group_len() returns 0 if the underlying captures doesn't
        // represent a match, but the behavior guaranteed for this method is
        // that the length doesn't change based on a match or not.
        self.0.group_info().group_len(PatternID::ZERO)
    }

    /// An alias for the `get` method for backwards compatibility.
    ///
    /// Previously, we exported `get` as `pos` in an undocumented API. To
    /// prevent breaking that code (e.g., in `regex-capi`), we continue
    /// re-exporting the same undocumented API.
    #[doc(hidden)]
    #[inline]
    pub fn pos(&self, i: usize) -> Option<(usize, usize)> {
        self.get(i)
    }
}

/// An iterator over all non-overlapping matches in a haystack.
///
/// This iterator yields [`Match`] values. The iterator stops when no more
/// matches can be found.
///
/// `'r` is the lifetime of the compiled regular expression and `'h` is the
/// lifetime of the haystack.
///
/// This iterator is created by [`Regex::find_iter`].
///
/// # Time complexity
///
/// Note that since an iterator runs potentially many searches on the haystack
/// and since each search has worst case `O(m * n)` time complexity, the
/// overall worst case time complexity for iteration is `O(m * n^2)`.
#[derive(Debug)]
pub struct Matches<'r, 'h> {
    haystack: &'h str,
    it: meta::FindMatches<'r, 'h>,
}

impl<'r, 'h> Iterator for Matches<'r, 'h> {
    type Item = Match<'h>;

    #[inline]
    fn next(&mut self) -> Option<Match<'h>> {
        self.it
            .next()
            .map(|sp| Match::new(self.haystack, sp.start(), sp.end()))
    }

    #[inline]
    fn count(self) -> usize {
        // This can actually be up to 2x faster than calling `next()` until
        // completion, because counting matches when using a DFA only requires
        // finding the end of each match. But returning a `Match` via `next()`
        // requires the start of each match which, with a DFA, requires a
        // reverse forward scan to find it.
        self.it.count()
    }
}

impl<'r, 'h> core::iter::FusedIterator for Matches<'r, 'h> {}

/// An iterator over all non-overlapping capture matches in a haystack.
///
/// This iterator yields [`Captures`] values. The iterator stops when no more
/// matches can be found.
///
/// `'r` is the lifetime of the compiled regular expression and `'h` is the
/// lifetime of the matched string.
///
/// This iterator is created by [`Regex::captures_iter`].
///
/// # Time complexity
///
/// Note that since an iterator runs potentially many searches on the haystack
/// and since each search has worst case `O(m * n)` time complexity, the
/// overall worst case time complexity for iteration is `O(m * n^2)`.
#[derive(Debug)]
pub struct CaptureMatches<'r, 'h> {
    haystack: &'h str,
    it: meta::CapturesMatches<'r, 'h>,
}

impl<'r, 'h> Iterator for CaptureMatches<'r, 'h> {
    type Item = Captures<'h>;

    #[inline]
    fn next(&mut self) -> Option<Captures<'h>> {
        let static_captures_len = self.it.regex().static_captures_len();
        self.it.next().map(|caps| Captures {
            haystack: self.haystack,
            caps,
            static_captures_len,
        })
    }

    #[inline]
    fn count(self) -> usize {
        // This can actually be up to 2x faster than calling `next()` until
        // completion, because counting matches when using a DFA only requires
        // finding the end of each match. But returning a `Match` via `next()`
        // requires the start of each match which, with a DFA, requires a
        // reverse forward scan to find it.
        self.it.count()
    }
}

impl<'r, 'h> core::iter::FusedIterator for CaptureMatches<'r, 'h> {}

/// An iterator over all substrings delimited by a regex match.
///
/// `'r` is the lifetime of the compiled regular expression and `'h` is the
/// lifetime of the byte string being split.
///
/// This iterator is created by [`Regex::split`].
///
/// # Time complexity
///
/// Note that since an iterator runs potentially many searches on the haystack
/// and since each search has worst case `O(m * n)` time complexity, the
/// overall worst case time complexity for iteration is `O(m * n^2)`.
#[derive(Debug)]
pub struct Split<'r, 'h> {
    haystack: &'h str,
    it: meta::Split<'r, 'h>,
}

impl<'r, 'h> Iterator for Split<'r, 'h> {
    type Item = &'h str;

    #[inline]
    fn next(&mut self) -> Option<&'h str> {
        self.it.next().map(|span| &self.haystack[span])
    }
}

impl<'r, 'h> core::iter::FusedIterator for Split<'r, 'h> {}

/// An iterator over at most `N` substrings delimited by a regex match.
///
/// The last substring yielded by this iterator will be whatever remains after
/// `N-1` splits.
///
/// `'r` is the lifetime of the compiled regular expression and `'h` is the
/// lifetime of the byte string being split.
///
/// This iterator is created by [`Regex::splitn`].
///
/// # Time complexity
///
/// Note that since an iterator runs potentially many searches on the haystack
/// and since each search has worst case `O(m * n)` time complexity, the
/// overall worst case time complexity for iteration is `O(m * n^2)`.
///
/// Although note that the worst case time here has an upper bound given
/// by the `limit` parameter to [`Regex::splitn`].
#[derive(Debug)]
pub struct SplitN<'r, 'h> {
    haystack: &'h str,
    it: meta::SplitN<'r, 'h>,
}

impl<'r, 'h> Iterator for SplitN<'r, 'h> {
    type Item = &'h str;

    #[inline]
    fn next(&mut self) -> Option<&'h str> {
        self.it.next().map(|span| &self.haystack[span])
    }

    #[inline]
    fn size_hint(&self) -> (usize, Option<usize>) {
        self.it.size_hint()
    }
}

impl<'r, 'h> core::iter::FusedIterator for SplitN<'r, 'h> {}

/// An iterator over the names of all capture groups in a regex.
///
/// This iterator yields values of type `Option<&str>` in order of the opening
/// capture group parenthesis in the regex pattern. `None` is yielded for
/// groups with no name. The first element always corresponds to the implicit
/// and unnamed group for the overall match.
///
/// `'r` is the lifetime of the compiled regular expression.
///
/// This iterator is created by [`Regex::capture_names`].
#[derive(Clone, Debug)]
pub struct CaptureNames<'r>(captures::GroupInfoPatternNames<'r>);

impl<'r> Iterator for CaptureNames<'r> {
    type Item = Option<&'r str>;

    #[inline]
    fn next(&mut self) -> Option<Option<&'r str>> {
        self.0.next()
    }

    #[inline]
    fn size_hint(&self) -> (usize, Option<usize>) {
        self.0.size_hint()
    }

    #[inline]
    fn count(self) -> usize {
        self.0.count()
    }
}

impl<'r> ExactSizeIterator for CaptureNames<'r> {}

impl<'r> core::iter::FusedIterator for CaptureNames<'r> {}

/// An iterator over all group matches in a [`Captures`] value.
///
/// This iterator yields values of type `Option<Match<'h>>`, where `'h` is the
/// lifetime of the haystack that the matches are for. The order of elements
/// yielded corresponds to the order of the opening parenthesis for the group
/// in the regex pattern. `None` is yielded for groups that did not participate
/// in the match.
///
/// The first element always corresponds to the implicit group for the overall
/// match. Since this iterator is created by a [`Captures`] value, and a
/// `Captures` value is only created when a match occurs, it follows that the
/// first element yielded by this iterator is guaranteed to be non-`None`.
///
/// The lifetime `'c` corresponds to the lifetime of the `Captures` value that
/// created this iterator, and the lifetime `'h` corresponds to the originally
/// matched haystack.
#[derive(Clone, Debug)]
pub struct SubCaptureMatches<'c, 'h> {
    haystack: &'h str,
    it: captures::CapturesPatternIter<'c>,
}

impl<'c, 'h> Iterator for SubCaptureMatches<'c, 'h> {
    type Item = Option<Match<'h>>;

    #[inline]
    fn next(&mut self) -> Option<Option<Match<'h>>> {
        self.it.next().map(|group| {
            group.map(|sp| Match::new(self.haystack, sp.start, sp.end))
        })
    }

    #[inline]
    fn size_hint(&self) -> (usize, Option<usize>) {
        self.it.size_hint()
    }

    #[inline]
    fn count(self) -> usize {
        self.it.count()
    }
}

impl<'c, 'h> ExactSizeIterator for SubCaptureMatches<'c, 'h> {}

impl<'c, 'h> core::iter::FusedIterator for SubCaptureMatches<'c, 'h> {}

/// A trait for types that can be used to replace matches in a haystack.
///
/// In general, users of this crate shouldn't need to implement this trait,
/// since implementations are already provided for `&str` along with other
/// variants of string types, as well as `FnMut(&Captures) -> String` (or any
/// `FnMut(&Captures) -> T` where `T: AsRef<str>`). Those cover most use cases,
/// but callers can implement this trait directly if necessary.
///
/// # Example
///
/// This example shows a basic implementation of  the `Replacer` trait. This
/// can be done much more simply using the replacement string interpolation
/// support (e.g., `$first $last`), but this approach avoids needing to parse
/// the replacement string at all.
///
/// ```
/// use regex::{Captures, Regex, Replacer};
///
/// struct NameSwapper;
///
/// impl Replacer for NameSwapper {
///     fn replace_append(&mut self, caps: &Captures<'_>, dst: &mut String) {
///         dst.push_str(&caps["first"]);
///         dst.push_str(" ");
///         dst.push_str(&caps["last"]);
///     }
/// }
///
/// let re = Regex::new(r"(?<last>[^,\s]+),\s+(?<first>\S+)").unwrap();
/// let result = re.replace("Springsteen, Bruce", NameSwapper);
/// assert_eq!(result, "Bruce Springsteen");
/// ```
pub trait Replacer {
    /// Appends possibly empty data to `dst` to replace the current match.
    ///
    /// The current match is represented by `caps`, which is guaranteed to
    /// have a match at capture group `0`.
    ///
    /// For example, a no-op replacement would be `dst.push_str(&caps[0])`.
    fn replace_append(&mut self, caps: &Captures<'_>, dst: &mut String);

    /// Return a fixed unchanging replacement string.
    ///
    /// When doing replacements, if access to [`Captures`] is not needed (e.g.,
    /// the replacement string does not need `$` expansion), then it can be
    /// beneficial to avoid finding sub-captures.
    ///
    /// In general, this is called once for every call to a replacement routine
    /// such as [`Regex::replace_all`].
    fn no_expansion<'r>(&'r mut self) -> Option<Cow<'r, str>> {
        None
    }

    /// Returns a type that implements `Replacer`, but that borrows and wraps
    /// this `Replacer`.
    ///
    /// This is useful when you want to take a generic `Replacer` (which might
    /// not be cloneable) and use it without consuming it, so it can be used
    /// more than once.
    ///
    /// # Example
    ///
    /// ```
    /// use regex::{Regex, Replacer};
    ///
    /// fn replace_all_twice<R: Replacer>(
    ///     re: Regex,
    ///     src: &str,
    ///     mut rep: R,
    /// ) -> String {
    ///     let dst = re.replace_all(src, rep.by_ref());
    ///     let dst = re.replace_all(&dst, rep.by_ref());
    ///     dst.into_owned()
    /// }
    /// ```
    fn by_ref<'r>(&'r mut self) -> ReplacerRef<'r, Self> {
        ReplacerRef(self)
    }
}

impl<'a> Replacer for &'a str {
    fn replace_append(&mut self, caps: &Captures<'_>, dst: &mut String) {
        caps.expand(*self, dst);
    }

    fn no_expansion(&mut self) -> Option<Cow<'_, str>> {
        no_expansion(self)
    }
}

impl<'a> Replacer for &'a String {
    fn replace_append(&mut self, caps: &Captures<'_>, dst: &mut String) {
        self.as_str().replace_append(caps, dst)
    }

    fn no_expansion(&mut self) -> Option<Cow<'_, str>> {
        no_expansion(self)
    }
}

impl Replacer for String {
    fn replace_append(&mut self, caps: &Captures<'_>, dst: &mut String) {
        self.as_str().replace_append(caps, dst)
    }

    fn no_expansion(&mut self) -> Option<Cow<'_, str>> {
        no_expansion(self)
    }
}

impl<'a> Replacer for Cow<'a, str> {
    fn replace_append(&mut self, caps: &Captures<'_>, dst: &mut String) {
        self.as_ref().replace_append(caps, dst)
    }

    fn no_expansion(&mut self) -> Option<Cow<'_, str>> {
        no_expansion(self)
    }
}

impl<'a> Replacer for &'a Cow<'a, str> {
    fn replace_append(&mut self, caps: &Captures<'_>, dst: &mut String) {
        self.as_ref().replace_append(caps, dst)
    }

    fn no_expansion(&mut self) -> Option<Cow<'_, str>> {
        no_expansion(self)
    }
}

impl<F, T> Replacer for F
where
    F: FnMut(&Captures<'_>) -> T,
    T: AsRef<str>,
{
    fn replace_append(&mut self, caps: &Captures<'_>, dst: &mut String) {
        dst.push_str((*self)(caps).as_ref());
    }
}

/// A by-reference adaptor for a [`Replacer`].
///
/// This permits reusing the same `Replacer` value in multiple calls to a
/// replacement routine like [`Regex::replace_all`].
///
/// This type is created by [`Replacer::by_ref`].
#[derive(Debug)]
pub struct ReplacerRef<'a, R: ?Sized>(&'a mut R);

impl<'a, R: Replacer + ?Sized + 'a> Replacer for ReplacerRef<'a, R> {
    fn replace_append(&mut self, caps: &Captures<'_>, dst: &mut String) {
        self.0.replace_append(caps, dst)
    }

    fn no_expansion(&mut self) -> Option<Cow<'_, str>> {
        self.0.no_expansion()
    }
}

/// A helper type for forcing literal string replacement.
///
/// It can be used with routines like [`Regex::replace`] and
/// [`Regex::replace_all`] to do a literal string replacement without expanding
/// `$name` to their corresponding capture groups. This can be both convenient
/// (to avoid escaping `$`, for example) and faster (since capture groups
/// don't need to be found).
///
/// `'s` is the lifetime of the literal string to use.
///
/// # Example
///
/// ```
/// use regex::{NoExpand, Regex};
///
/// let re = Regex::new(r"(?<last>[^,\s]+),\s+(\S+)").unwrap();
/// let result = re.replace("Springsteen, Bruce", NoExpand("$2 $last"));
/// assert_eq!(result, "$2 $last");
/// ```
#[derive(Clone, Debug)]
pub struct NoExpand<'s>(pub &'s str);

impl<'s> Replacer for NoExpand<'s> {
    fn replace_append(&mut self, _: &Captures<'_>, dst: &mut String) {
        dst.push_str(self.0);
    }

    fn no_expansion(&mut self) -> Option<Cow<'_, str>> {
        Some(Cow::Borrowed(self.0))
    }
}

/// Quickly checks the given replacement string for whether interpolation
/// should be done on it. It returns `None` if a `$` was found anywhere in the
/// given string, which suggests interpolation needs to be done. But if there's
/// no `$` anywhere, then interpolation definitely does not need to be done. In
/// that case, the given string is returned as a borrowed `Cow`.
///
/// This is meant to be used to implement the `Replacer::no_expandsion` method
/// in its various trait impls.
fn no_expansion<T: AsRef<str>>(replacement: &T) -> Option<Cow<'_, str>> {
    let replacement = replacement.as_ref();
    match crate::find_byte::find_byte(b'$', replacement.as_bytes()) {
        Some(_) => None,
        None => Some(Cow::Borrowed(replacement)),
    }
}