1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139
/*!
This module provides APIs for dealing with the alphabets of finite state
machines.
There are two principal types in this module, [`ByteClasses`] and [`Unit`].
The former defines the alphabet of a finite state machine while the latter
represents an element of that alphabet.
To a first approximation, the alphabet of all automata in this crate is just
a `u8`. Namely, every distinct byte value. All 256 of them. In practice, this
can be quite wasteful when building a transition table for a DFA, since it
requires storing a state identifier for each element in the alphabet. Instead,
we collapse the alphabet of an automaton down into equivalence classes, where
every byte in the same equivalence class never discriminates between a match or
a non-match from any other byte in the same class. For example, in the regex
`[a-z]+`, then you could consider it having an alphabet consisting of two
equivalence classes: `a-z` and everything else. In terms of the transitions on
an automaton, it doesn't actually require representing every distinct byte.
Just the equivalence classes.
The downside of equivalence classes is that, of course, searching a haystack
deals with individual byte values. Those byte values need to be mapped to
their corresponding equivalence class. This is what `ByteClasses` does. In
practice, doing this for every state transition has negligible impact on modern
CPUs. Moreover, it helps make more efficient use of the CPU cache by (possibly
considerably) shrinking the size of the transition table.
One last hiccup concerns `Unit`. Namely, because of look-around and how the
DFAs in this crate work, we need to add a sentinel value to our alphabet
of equivalence classes that represents the "end" of a search. We call that
sentinel [`Unit::eoi`] or "end of input." Thus, a `Unit` is either an
equivalence class corresponding to a set of bytes, or it is a special "end of
input" sentinel.
In general, you should not expect to need either of these types unless you're
doing lower level shenanigans with DFAs, or even building your own DFAs.
(Although, you don't have to use these types to build your own DFAs of course.)
For example, if you're walking a DFA's state graph, it's probably useful to
make use of [`ByteClasses`] to visit each element in the DFA's alphabet instead
of just visiting every distinct `u8` value. The latter isn't necessarily wrong,
but it could be potentially very wasteful.
*/
use crate::util::{
escape::DebugByte,
wire::{self, DeserializeError, SerializeError},
};
/// Unit represents a single unit of haystack for DFA based regex engines.
///
/// It is not expected for consumers of this crate to need to use this type
/// unless they are implementing their own DFA. And even then, it's not
/// required: implementors may use other techniques to handle haystack units.
///
/// Typically, a single unit of haystack for a DFA would be a single byte.
/// However, for the DFAs in this crate, matches are delayed by a single byte
/// in order to handle look-ahead assertions (`\b`, `$` and `\z`). Thus, once
/// we have consumed the haystack, we must run the DFA through one additional
/// transition using a unit that indicates the haystack has ended.
///
/// There is no way to represent a sentinel with a `u8` since all possible
/// values *may* be valid haystack units to a DFA, therefore this type
/// explicitly adds room for a sentinel value.
///
/// The sentinel EOI value is always its own equivalence class and is
/// ultimately represented by adding 1 to the maximum equivalence class value.
/// So for example, the regex `^[a-z]+$` might be split into the following
/// equivalence classes:
///
/// ```text
/// 0 => [\x00-`]
/// 1 => [a-z]
/// 2 => [{-\xFF]
/// 3 => [EOI]
/// ```
///
/// Where EOI is the special sentinel value that is always in its own
/// singleton equivalence class.
#[derive(Clone, Copy, Eq, PartialEq, PartialOrd, Ord)]
pub struct Unit(UnitKind);
#[derive(Clone, Copy, Eq, PartialEq, PartialOrd, Ord)]
enum UnitKind {
/// Represents a byte value, or more typically, an equivalence class
/// represented as a byte value.
U8(u8),
/// Represents the "end of input" sentinel. We regretably use a `u16`
/// here since the maximum sentinel value is `256`. Thankfully, we don't
/// actually store a `Unit` anywhere, so this extra space shouldn't be too
/// bad.
EOI(u16),
}
impl Unit {
/// Create a new haystack unit from a byte value.
///
/// All possible byte values are legal. However, when creating a haystack
/// unit for a specific DFA, one should be careful to only construct units
/// that are in that DFA's alphabet. Namely, one way to compact a DFA's
/// in-memory representation is to collapse its transitions to a set of
/// equivalence classes into a set of all possible byte values. If a DFA
/// uses equivalence classes instead of byte values, then the byte given
/// here should be the equivalence class.
pub fn u8(byte: u8) -> Unit {
Unit(UnitKind::U8(byte))
}
/// Create a new "end of input" haystack unit.
///
/// The value given is the sentinel value used by this unit to represent
/// the "end of input." The value should be the total number of equivalence
/// classes in the corresponding alphabet. Its maximum value is `256`,
/// which occurs when every byte is its own equivalence class.
///
/// # Panics
///
/// This panics when `num_byte_equiv_classes` is greater than `256`.
pub fn eoi(num_byte_equiv_classes: usize) -> Unit {
assert!(
num_byte_equiv_classes <= 256,
"max number of byte-based equivalent classes is 256, but got {}",
num_byte_equiv_classes,
);
Unit(UnitKind::EOI(u16::try_from(num_byte_equiv_classes).unwrap()))
}
/// If this unit is not an "end of input" sentinel, then returns its
/// underlying byte value. Otherwise return `None`.
pub fn as_u8(self) -> Option<u8> {
match self.0 {
UnitKind::U8(b) => Some(b),
UnitKind::EOI(_) => None,
}
}
/// If this unit is an "end of input" sentinel, then return the underlying
/// sentinel value that was given to [`Unit::eoi`]. Otherwise return
/// `None`.
pub fn as_eoi(self) -> Option<u16> {
match self.0 {
UnitKind::U8(_) => None,
UnitKind::EOI(sentinel) => Some(sentinel),
}
}
/// Return this unit as a `usize`, regardless of whether it is a byte value
/// or an "end of input" sentinel. In the latter case, the underlying
/// sentinel value given to [`Unit::eoi`] is returned.
pub fn as_usize(self) -> usize {
match self.0 {
UnitKind::U8(b) => usize::from(b),
UnitKind::EOI(eoi) => usize::from(eoi),
}
}
/// Returns true if and only of this unit is a byte value equivalent to the
/// byte given. This always returns false when this is an "end of input"
/// sentinel.
pub fn is_byte(self, byte: u8) -> bool {
self.as_u8().map_or(false, |b| b == byte)
}
/// Returns true when this unit represents an "end of input" sentinel.
pub fn is_eoi(self) -> bool {
self.as_eoi().is_some()
}
/// Returns true when this unit corresponds to an ASCII word byte.
///
/// This always returns false when this unit represents an "end of input"
/// sentinel.
pub fn is_word_byte(self) -> bool {
self.as_u8().map_or(false, crate::util::utf8::is_word_byte)
}
}
impl core::fmt::Debug for Unit {
fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
match self.0 {
UnitKind::U8(b) => write!(f, "{:?}", DebugByte(b)),
UnitKind::EOI(_) => write!(f, "EOI"),
}
}
}
/// A representation of byte oriented equivalence classes.
///
/// This is used in a DFA to reduce the size of the transition table. This can
/// have a particularly large impact not only on the total size of a dense DFA,
/// but also on compile times.
///
/// The essential idea here is that the alphabet of a DFA is shrunk from the
/// usual 256 distinct byte values down to a set of equivalence classes. The
/// guarantee you get is that any byte belonging to the same equivalence class
/// can be treated as if it were any other byte in the same class, and the
/// result of a search wouldn't change.
///
/// # Example
///
/// This example shows how to get byte classes from an
/// [`NFA`](crate::nfa::thompson::NFA) and ask for the class of various bytes.
///
/// ```
/// use regex_automata::nfa::thompson::NFA;
///
/// let nfa = NFA::new("[a-z]+")?;
/// let classes = nfa.byte_classes();
/// // 'a' and 'z' are in the same class for this regex.
/// assert_eq!(classes.get(b'a'), classes.get(b'z'));
/// // But 'a' and 'A' are not.
/// assert_ne!(classes.get(b'a'), classes.get(b'A'));
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
#[derive(Clone, Copy)]
pub struct ByteClasses([u8; 256]);
impl ByteClasses {
/// Creates a new set of equivalence classes where all bytes are mapped to
/// the same class.
#[inline]
pub fn empty() -> ByteClasses {
ByteClasses([0; 256])
}
/// Creates a new set of equivalence classes where each byte belongs to
/// its own equivalence class.
#[inline]
pub fn singletons() -> ByteClasses {
let mut classes = ByteClasses::empty();
for b in 0..=255 {
classes.set(b, b);
}
classes
}
/// Deserializes a byte class map from the given slice. If the slice is of
/// insufficient length or otherwise contains an impossible mapping, then
/// an error is returned. Upon success, the number of bytes read along with
/// the map are returned. The number of bytes read is always a multiple of
/// 8.
pub(crate) fn from_bytes(
slice: &[u8],
) -> Result<(ByteClasses, usize), DeserializeError> {
wire::check_slice_len(slice, 256, "byte class map")?;
let mut classes = ByteClasses::empty();
for (b, &class) in slice[..256].iter().enumerate() {
classes.set(u8::try_from(b).unwrap(), class);
}
// We specifically don't use 'classes.iter()' here because that
// iterator depends on 'classes.alphabet_len()' being correct. But that
// is precisely the thing we're trying to verify below!
for &b in classes.0.iter() {
if usize::from(b) >= classes.alphabet_len() {
return Err(DeserializeError::generic(
"found equivalence class greater than alphabet len",
));
}
}
Ok((classes, 256))
}
/// Writes this byte class map to the given byte buffer. if the given
/// buffer is too small, then an error is returned. Upon success, the total
/// number of bytes written is returned. The number of bytes written is
/// guaranteed to be a multiple of 8.
pub(crate) fn write_to(
&self,
mut dst: &mut [u8],
) -> Result<usize, SerializeError> {
let nwrite = self.write_to_len();
if dst.len() < nwrite {
return Err(SerializeError::buffer_too_small("byte class map"));
}
for b in 0..=255 {
dst[0] = self.get(b);
dst = &mut dst[1..];
}
Ok(nwrite)
}
/// Returns the total number of bytes written by `write_to`.
pub(crate) fn write_to_len(&self) -> usize {
256
}
/// Set the equivalence class for the given byte.
#[inline]
pub fn set(&mut self, byte: u8, class: u8) {
self.0[usize::from(byte)] = class;
}
/// Get the equivalence class for the given byte.
#[inline]
pub fn get(&self, byte: u8) -> u8 {
self.0[usize::from(byte)]
}
/// Get the equivalence class for the given haystack unit and return the
/// class as a `usize`.
#[inline]
pub fn get_by_unit(&self, unit: Unit) -> usize {
match unit.0 {
UnitKind::U8(b) => usize::from(self.get(b)),
UnitKind::EOI(b) => usize::from(b),
}
}
/// Create a unit that represents the "end of input" sentinel based on the
/// number of equivalence classes.
#[inline]
pub fn eoi(&self) -> Unit {
// The alphabet length already includes the EOI sentinel, hence why
// we subtract 1.
Unit::eoi(self.alphabet_len().checked_sub(1).unwrap())
}
/// Return the total number of elements in the alphabet represented by
/// these equivalence classes. Equivalently, this returns the total number
/// of equivalence classes.
#[inline]
pub fn alphabet_len(&self) -> usize {
// Add one since the number of equivalence classes is one bigger than
// the last one. But add another to account for the final EOI class
// that isn't explicitly represented.
usize::from(self.0[255]) + 1 + 1
}
/// Returns the stride, as a base-2 exponent, required for these
/// equivalence classes.
///
/// The stride is always the smallest power of 2 that is greater than or
/// equal to the alphabet length, and the `stride2` returned here is the
/// exponent applied to `2` to get the smallest power. This is done so that
/// converting between premultiplied state IDs and indices can be done with
/// shifts alone, which is much faster than integer division.
#[inline]
pub fn stride2(&self) -> usize {
let zeros = self.alphabet_len().next_power_of_two().trailing_zeros();
usize::try_from(zeros).unwrap()
}
/// Returns true if and only if every byte in this class maps to its own
/// equivalence class. Equivalently, there are 257 equivalence classes
/// and each class contains either exactly one byte or corresponds to the
/// singleton class containing the "end of input" sentinel.
#[inline]
pub fn is_singleton(&self) -> bool {
self.alphabet_len() == 257
}
/// Returns an iterator over all equivalence classes in this set.
#[inline]
pub fn iter(&self) -> ByteClassIter<'_> {
ByteClassIter { classes: self, i: 0 }
}
/// Returns an iterator over a sequence of representative bytes from each
/// equivalence class within the range of bytes given.
///
/// When the given range is unbounded on both sides, the iterator yields
/// exactly N items, where N is equivalent to the number of equivalence
/// classes. Each item is an arbitrary byte drawn from each equivalence
/// class.
///
/// This is useful when one is determinizing an NFA and the NFA's alphabet
/// hasn't been converted to equivalence classes. Picking an arbitrary byte
/// from each equivalence class then permits a full exploration of the NFA
/// instead of using every possible byte value and thus potentially saves
/// quite a lot of redundant work.
///
/// # Example
///
/// This shows an example of what a complete sequence of representatives
/// might look like from a real example.
///
/// ```
/// use regex_automata::{nfa::thompson::NFA, util::alphabet::Unit};
///
/// let nfa = NFA::new("[a-z]+")?;
/// let classes = nfa.byte_classes();
/// let reps: Vec<Unit> = classes.representatives(..).collect();
/// // Note that the specific byte values yielded are not guaranteed!
/// let expected = vec![
/// Unit::u8(b'\x00'),
/// Unit::u8(b'a'),
/// Unit::u8(b'{'),
/// Unit::eoi(3),
/// ];
/// assert_eq!(expected, reps);
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
///
/// Note though, that you can ask for an arbitrary range of bytes, and only
/// representatives for that range will be returned:
///
/// ```
/// use regex_automata::{nfa::thompson::NFA, util::alphabet::Unit};
///
/// let nfa = NFA::new("[a-z]+")?;
/// let classes = nfa.byte_classes();
/// let reps: Vec<Unit> = classes.representatives(b'A'..=b'z').collect();
/// // Note that the specific byte values yielded are not guaranteed!
/// let expected = vec![
/// Unit::u8(b'A'),
/// Unit::u8(b'a'),
/// ];
/// assert_eq!(expected, reps);
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
pub fn representatives<R: core::ops::RangeBounds<u8>>(
&self,
range: R,
) -> ByteClassRepresentatives<'_> {
use core::ops::Bound;
let cur_byte = match range.start_bound() {
Bound::Included(&i) => usize::from(i),
Bound::Excluded(&i) => usize::from(i).checked_add(1).unwrap(),
Bound::Unbounded => 0,
};
let end_byte = match range.end_bound() {
Bound::Included(&i) => {
Some(usize::from(i).checked_add(1).unwrap())
}
Bound::Excluded(&i) => Some(usize::from(i)),
Bound::Unbounded => None,
};
assert_ne!(
cur_byte,
usize::MAX,
"start range must be less than usize::MAX",
);
ByteClassRepresentatives {
classes: self,
cur_byte,
end_byte,
last_class: None,
}
}
/// Returns an iterator of the bytes in the given equivalence class.
///
/// This is useful when one needs to know the actual bytes that belong to
/// an equivalence class. For example, conceptually speaking, accelerating
/// a DFA state occurs when a state only has a few outgoing transitions.
/// But in reality, what is required is that there are only a small
/// number of distinct bytes that can lead to an outgoing transition. The
/// difference is that any one transition can correspond to an equivalence
/// class which may contains many bytes. Therefore, DFA state acceleration
/// considers the actual elements in each equivalence class of each
/// outgoing transition.
///
/// # Example
///
/// This shows an example of how to get all of the elements in an
/// equivalence class.
///
/// ```
/// use regex_automata::{nfa::thompson::NFA, util::alphabet::Unit};
///
/// let nfa = NFA::new("[a-z]+")?;
/// let classes = nfa.byte_classes();
/// let elements: Vec<Unit> = classes.elements(Unit::u8(1)).collect();
/// let expected: Vec<Unit> = (b'a'..=b'z').map(Unit::u8).collect();
/// assert_eq!(expected, elements);
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
#[inline]
pub fn elements(&self, class: Unit) -> ByteClassElements {
ByteClassElements { classes: self, class, byte: 0 }
}
/// Returns an iterator of byte ranges in the given equivalence class.
///
/// That is, a sequence of contiguous ranges are returned. Typically, every
/// class maps to a single contiguous range.
fn element_ranges(&self, class: Unit) -> ByteClassElementRanges {
ByteClassElementRanges { elements: self.elements(class), range: None }
}
}
impl Default for ByteClasses {
fn default() -> ByteClasses {
ByteClasses::singletons()
}
}
impl core::fmt::Debug for ByteClasses {
fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
if self.is_singleton() {
write!(f, "ByteClasses({{singletons}})")
} else {
write!(f, "ByteClasses(")?;
for (i, class) in self.iter().enumerate() {
if i > 0 {
write!(f, ", ")?;
}
write!(f, "{:?} => [", class.as_usize())?;
for (start, end) in self.element_ranges(class) {
if start == end {
write!(f, "{:?}", start)?;
} else {
write!(f, "{:?}-{:?}", start, end)?;
}
}
write!(f, "]")?;
}
write!(f, ")")
}
}
}
/// An iterator over each equivalence class.
///
/// The last element in this iterator always corresponds to [`Unit::eoi`].
///
/// This is created by the [`ByteClasses::iter`] method.
///
/// The lifetime `'a` refers to the lifetime of the byte classes that this
/// iterator was created from.
#[derive(Debug)]
pub struct ByteClassIter<'a> {
classes: &'a ByteClasses,
i: usize,
}
impl<'a> Iterator for ByteClassIter<'a> {
type Item = Unit;
fn next(&mut self) -> Option<Unit> {
if self.i + 1 == self.classes.alphabet_len() {
self.i += 1;
Some(self.classes.eoi())
} else if self.i < self.classes.alphabet_len() {
let class = u8::try_from(self.i).unwrap();
self.i += 1;
Some(Unit::u8(class))
} else {
None
}
}
}
/// An iterator over representative bytes from each equivalence class.
///
/// This is created by the [`ByteClasses::representatives`] method.
///
/// The lifetime `'a` refers to the lifetime of the byte classes that this
/// iterator was created from.
#[derive(Debug)]
pub struct ByteClassRepresentatives<'a> {
classes: &'a ByteClasses,
cur_byte: usize,
end_byte: Option<usize>,
last_class: Option<u8>,
}
impl<'a> Iterator for ByteClassRepresentatives<'a> {
type Item = Unit;
fn next(&mut self) -> Option<Unit> {
while self.cur_byte < self.end_byte.unwrap_or(256) {
let byte = u8::try_from(self.cur_byte).unwrap();
let class = self.classes.get(byte);
self.cur_byte += 1;
if self.last_class != Some(class) {
self.last_class = Some(class);
return Some(Unit::u8(byte));
}
}
if self.cur_byte != usize::MAX && self.end_byte.is_none() {
// Using usize::MAX as a sentinel is OK because we ban usize::MAX
// from appearing as a start bound in iterator construction. But
// why do it this way? Well, we want to return the EOI class
// whenever the end of the given range is unbounded because EOI
// isn't really a "byte" per se, so the only way it should be
// excluded is if there is a bounded end to the range. Therefore,
// when the end is unbounded, we just need to know whether we've
// reported EOI or not. When we do, we set cur_byte to a value it
// can never otherwise be.
self.cur_byte = usize::MAX;
return Some(self.classes.eoi());
}
None
}
}
/// An iterator over all elements in an equivalence class.
///
/// This is created by the [`ByteClasses::elements`] method.
///
/// The lifetime `'a` refers to the lifetime of the byte classes that this
/// iterator was created from.
#[derive(Debug)]
pub struct ByteClassElements<'a> {
classes: &'a ByteClasses,
class: Unit,
byte: usize,
}
impl<'a> Iterator for ByteClassElements<'a> {
type Item = Unit;
fn next(&mut self) -> Option<Unit> {
while self.byte < 256 {
let byte = u8::try_from(self.byte).unwrap();
self.byte += 1;
if self.class.is_byte(self.classes.get(byte)) {
return Some(Unit::u8(byte));
}
}
if self.byte < 257 {
self.byte += 1;
if self.class.is_eoi() {
return Some(Unit::eoi(256));
}
}
None
}
}
/// An iterator over all elements in an equivalence class expressed as a
/// sequence of contiguous ranges.
#[derive(Debug)]
struct ByteClassElementRanges<'a> {
elements: ByteClassElements<'a>,
range: Option<(Unit, Unit)>,
}
impl<'a> Iterator for ByteClassElementRanges<'a> {
type Item = (Unit, Unit);
fn next(&mut self) -> Option<(Unit, Unit)> {
loop {
let element = match self.elements.next() {
None => return self.range.take(),
Some(element) => element,
};
match self.range.take() {
None => {
self.range = Some((element, element));
}
Some((start, end)) => {
if end.as_usize() + 1 != element.as_usize()
|| element.is_eoi()
{
self.range = Some((element, element));
return Some((start, end));
}
self.range = Some((start, element));
}
}
}
}
}
/// A partitioning of bytes into equivalence classes.
///
/// A byte class set keeps track of an *approximation* of equivalence classes
/// of bytes during NFA construction. That is, every byte in an equivalence
/// class cannot discriminate between a match and a non-match.
///
/// For example, in the regex `[ab]+`, the bytes `a` and `b` would be in the
/// same equivalence class because it never matters whether an `a` or a `b` is
/// seen, and no combination of `a`s and `b`s in the text can discriminate a
/// match.
///
/// Note though that this does not compute the minimal set of equivalence
/// classes. For example, in the regex `[ac]+`, both `a` and `c` are in the
/// same equivalence class for the same reason that `a` and `b` are in the
/// same equivalence class in the aforementioned regex. However, in this
/// implementation, `a` and `c` are put into distinct equivalence classes. The
/// reason for this is implementation complexity. In the future, we should
/// endeavor to compute the minimal equivalence classes since they can have a
/// rather large impact on the size of the DFA. (Doing this will likely require
/// rethinking how equivalence classes are computed, including changing the
/// representation here, which is only able to group contiguous bytes into the
/// same equivalence class.)
#[cfg(feature = "alloc")]
#[derive(Clone, Debug)]
pub(crate) struct ByteClassSet(ByteSet);
#[cfg(feature = "alloc")]
impl Default for ByteClassSet {
fn default() -> ByteClassSet {
ByteClassSet::empty()
}
}
#[cfg(feature = "alloc")]
impl ByteClassSet {
/// Create a new set of byte classes where all bytes are part of the same
/// equivalence class.
pub(crate) fn empty() -> Self {
ByteClassSet(ByteSet::empty())
}
/// Indicate the the range of byte given (inclusive) can discriminate a
/// match between it and all other bytes outside of the range.
pub(crate) fn set_range(&mut self, start: u8, end: u8) {
debug_assert!(start <= end);
if start > 0 {
self.0.add(start - 1);
}
self.0.add(end);
}
/// Add the contiguous ranges in the set given to this byte class set.
pub(crate) fn add_set(&mut self, set: &ByteSet) {
for (start, end) in set.iter_ranges() {
self.set_range(start, end);
}
}
/// Convert this boolean set to a map that maps all byte values to their
/// corresponding equivalence class. The last mapping indicates the largest
/// equivalence class identifier (which is never bigger than 255).
pub(crate) fn byte_classes(&self) -> ByteClasses {
let mut classes = ByteClasses::empty();
let mut class = 0u8;
let mut b = 0u8;
loop {
classes.set(b, class);
if b == 255 {
break;
}
if self.0.contains(b) {
class = class.checked_add(1).unwrap();
}
b = b.checked_add(1).unwrap();
}
classes
}
}
/// A simple set of bytes that is reasonably cheap to copy and allocation free.
#[derive(Clone, Copy, Debug, Default, Eq, PartialEq)]
pub(crate) struct ByteSet {
bits: BitSet,
}
/// The representation of a byte set. Split out so that we can define a
/// convenient Debug impl for it while keeping "ByteSet" in the output.
#[derive(Clone, Copy, Default, Eq, PartialEq)]
struct BitSet([u128; 2]);
impl ByteSet {
/// Create an empty set of bytes.
pub(crate) fn empty() -> ByteSet {
ByteSet { bits: BitSet([0; 2]) }
}
/// Add a byte to this set.
///
/// If the given byte already belongs to this set, then this is a no-op.
pub(crate) fn add(&mut self, byte: u8) {
let bucket = byte / 128;
let bit = byte % 128;
self.bits.0[usize::from(bucket)] |= 1 << bit;
}
/// Remove a byte from this set.
///
/// If the given byte is not in this set, then this is a no-op.
pub(crate) fn remove(&mut self, byte: u8) {
let bucket = byte / 128;
let bit = byte % 128;
self.bits.0[usize::from(bucket)] &= !(1 << bit);
}
/// Return true if and only if the given byte is in this set.
pub(crate) fn contains(&self, byte: u8) -> bool {
let bucket = byte / 128;
let bit = byte % 128;
self.bits.0[usize::from(bucket)] & (1 << bit) > 0
}
/// Return true if and only if the given inclusive range of bytes is in
/// this set.
pub(crate) fn contains_range(&self, start: u8, end: u8) -> bool {
(start..=end).all(|b| self.contains(b))
}
/// Returns an iterator over all bytes in this set.
pub(crate) fn iter(&self) -> ByteSetIter {
ByteSetIter { set: self, b: 0 }
}
/// Returns an iterator over all contiguous ranges of bytes in this set.
pub(crate) fn iter_ranges(&self) -> ByteSetRangeIter {
ByteSetRangeIter { set: self, b: 0 }
}
/// Return true if and only if this set is empty.
#[cfg_attr(feature = "perf-inline", inline(always))]
pub(crate) fn is_empty(&self) -> bool {
self.bits.0 == [0, 0]
}
/// Deserializes a byte set from the given slice. If the slice is of
/// incorrect length or is otherwise malformed, then an error is returned.
/// Upon success, the number of bytes read along with the set are returned.
/// The number of bytes read is always a multiple of 8.
pub(crate) fn from_bytes(
slice: &[u8],
) -> Result<(ByteSet, usize), DeserializeError> {
use core::mem::size_of;
wire::check_slice_len(slice, 2 * size_of::<u128>(), "byte set")?;
let mut nread = 0;
let (low, nr) = wire::try_read_u128(slice, "byte set low bucket")?;
nread += nr;
let (high, nr) = wire::try_read_u128(slice, "byte set high bucket")?;
nread += nr;
Ok((ByteSet { bits: BitSet([low, high]) }, nread))
}
/// Writes this byte set to the given byte buffer. If the given buffer is
/// too small, then an error is returned. Upon success, the total number of
/// bytes written is returned. The number of bytes written is guaranteed to
/// be a multiple of 8.
pub(crate) fn write_to<E: crate::util::wire::Endian>(
&self,
dst: &mut [u8],
) -> Result<usize, SerializeError> {
use core::mem::size_of;
let nwrite = self.write_to_len();
if dst.len() < nwrite {
return Err(SerializeError::buffer_too_small("byte set"));
}
let mut nw = 0;
E::write_u128(self.bits.0[0], &mut dst[nw..]);
nw += size_of::<u128>();
E::write_u128(self.bits.0[1], &mut dst[nw..]);
nw += size_of::<u128>();
assert_eq!(nwrite, nw, "expected to write certain number of bytes",);
assert_eq!(
nw % 8,
0,
"expected to write multiple of 8 bytes for byte set",
);
Ok(nw)
}
/// Returns the total number of bytes written by `write_to`.
pub(crate) fn write_to_len(&self) -> usize {
2 * core::mem::size_of::<u128>()
}
}
impl core::fmt::Debug for BitSet {
fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
let mut fmtd = f.debug_set();
for b in 0u8..=255 {
if (ByteSet { bits: *self }).contains(b) {
fmtd.entry(&b);
}
}
fmtd.finish()
}
}
#[derive(Debug)]
pub(crate) struct ByteSetIter<'a> {
set: &'a ByteSet,
b: usize,
}
impl<'a> Iterator for ByteSetIter<'a> {
type Item = u8;
fn next(&mut self) -> Option<u8> {
while self.b <= 255 {
let b = u8::try_from(self.b).unwrap();
self.b += 1;
if self.set.contains(b) {
return Some(b);
}
}
None
}
}
#[derive(Debug)]
pub(crate) struct ByteSetRangeIter<'a> {
set: &'a ByteSet,
b: usize,
}
impl<'a> Iterator for ByteSetRangeIter<'a> {
type Item = (u8, u8);
fn next(&mut self) -> Option<(u8, u8)> {
let asu8 = |n: usize| u8::try_from(n).unwrap();
while self.b <= 255 {
let start = asu8(self.b);
self.b += 1;
if !self.set.contains(start) {
continue;
}
let mut end = start;
while self.b <= 255 && self.set.contains(asu8(self.b)) {
end = asu8(self.b);
self.b += 1;
}
return Some((start, end));
}
None
}
}
#[cfg(all(test, feature = "alloc"))]
mod tests {
use alloc::{vec, vec::Vec};
use super::*;
#[test]
fn byte_classes() {
let mut set = ByteClassSet::empty();
set.set_range(b'a', b'z');
let classes = set.byte_classes();
assert_eq!(classes.get(0), 0);
assert_eq!(classes.get(1), 0);
assert_eq!(classes.get(2), 0);
assert_eq!(classes.get(b'a' - 1), 0);
assert_eq!(classes.get(b'a'), 1);
assert_eq!(classes.get(b'm'), 1);
assert_eq!(classes.get(b'z'), 1);
assert_eq!(classes.get(b'z' + 1), 2);
assert_eq!(classes.get(254), 2);
assert_eq!(classes.get(255), 2);
let mut set = ByteClassSet::empty();
set.set_range(0, 2);
set.set_range(4, 6);
let classes = set.byte_classes();
assert_eq!(classes.get(0), 0);
assert_eq!(classes.get(1), 0);
assert_eq!(classes.get(2), 0);
assert_eq!(classes.get(3), 1);
assert_eq!(classes.get(4), 2);
assert_eq!(classes.get(5), 2);
assert_eq!(classes.get(6), 2);
assert_eq!(classes.get(7), 3);
assert_eq!(classes.get(255), 3);
}
#[test]
fn full_byte_classes() {
let mut set = ByteClassSet::empty();
for b in 0u8..=255 {
set.set_range(b, b);
}
assert_eq!(set.byte_classes().alphabet_len(), 257);
}
#[test]
fn elements_typical() {
let mut set = ByteClassSet::empty();
set.set_range(b'b', b'd');
set.set_range(b'g', b'm');
set.set_range(b'z', b'z');
let classes = set.byte_classes();
// class 0: \x00-a
// class 1: b-d
// class 2: e-f
// class 3: g-m
// class 4: n-y
// class 5: z-z
// class 6: \x7B-\xFF
// class 7: EOI
assert_eq!(classes.alphabet_len(), 8);
let elements = classes.elements(Unit::u8(0)).collect::<Vec<_>>();
assert_eq!(elements.len(), 98);
assert_eq!(elements[0], Unit::u8(b'\x00'));
assert_eq!(elements[97], Unit::u8(b'a'));
let elements = classes.elements(Unit::u8(1)).collect::<Vec<_>>();
assert_eq!(
elements,
vec![Unit::u8(b'b'), Unit::u8(b'c'), Unit::u8(b'd')],
);
let elements = classes.elements(Unit::u8(2)).collect::<Vec<_>>();
assert_eq!(elements, vec![Unit::u8(b'e'), Unit::u8(b'f')],);
let elements = classes.elements(Unit::u8(3)).collect::<Vec<_>>();
assert_eq!(
elements,
vec![
Unit::u8(b'g'),
Unit::u8(b'h'),
Unit::u8(b'i'),
Unit::u8(b'j'),
Unit::u8(b'k'),
Unit::u8(b'l'),
Unit::u8(b'm'),
],
);
let elements = classes.elements(Unit::u8(4)).collect::<Vec<_>>();
assert_eq!(elements.len(), 12);
assert_eq!(elements[0], Unit::u8(b'n'));
assert_eq!(elements[11], Unit::u8(b'y'));
let elements = classes.elements(Unit::u8(5)).collect::<Vec<_>>();
assert_eq!(elements, vec![Unit::u8(b'z')]);
let elements = classes.elements(Unit::u8(6)).collect::<Vec<_>>();
assert_eq!(elements.len(), 133);
assert_eq!(elements[0], Unit::u8(b'\x7B'));
assert_eq!(elements[132], Unit::u8(b'\xFF'));
let elements = classes.elements(Unit::eoi(7)).collect::<Vec<_>>();
assert_eq!(elements, vec![Unit::eoi(256)]);
}
#[test]
fn elements_singletons() {
let classes = ByteClasses::singletons();
assert_eq!(classes.alphabet_len(), 257);
let elements = classes.elements(Unit::u8(b'a')).collect::<Vec<_>>();
assert_eq!(elements, vec![Unit::u8(b'a')]);
let elements = classes.elements(Unit::eoi(5)).collect::<Vec<_>>();
assert_eq!(elements, vec![Unit::eoi(256)]);
}
#[test]
fn elements_empty() {
let classes = ByteClasses::empty();
assert_eq!(classes.alphabet_len(), 2);
let elements = classes.elements(Unit::u8(0)).collect::<Vec<_>>();
assert_eq!(elements.len(), 256);
assert_eq!(elements[0], Unit::u8(b'\x00'));
assert_eq!(elements[255], Unit::u8(b'\xFF'));
let elements = classes.elements(Unit::eoi(1)).collect::<Vec<_>>();
assert_eq!(elements, vec![Unit::eoi(256)]);
}
#[test]
fn representatives() {
let mut set = ByteClassSet::empty();
set.set_range(b'b', b'd');
set.set_range(b'g', b'm');
set.set_range(b'z', b'z');
let classes = set.byte_classes();
let got: Vec<Unit> = classes.representatives(..).collect();
let expected = vec![
Unit::u8(b'\x00'),
Unit::u8(b'b'),
Unit::u8(b'e'),
Unit::u8(b'g'),
Unit::u8(b'n'),
Unit::u8(b'z'),
Unit::u8(b'\x7B'),
Unit::eoi(7),
];
assert_eq!(expected, got);
let got: Vec<Unit> = classes.representatives(..0).collect();
assert!(got.is_empty());
let got: Vec<Unit> = classes.representatives(1..1).collect();
assert!(got.is_empty());
let got: Vec<Unit> = classes.representatives(255..255).collect();
assert!(got.is_empty());
// A weird case that is the only guaranteed to way to get an iterator
// of just the EOI class by excluding all possible byte values.
let got: Vec<Unit> = classes
.representatives((
core::ops::Bound::Excluded(255),
core::ops::Bound::Unbounded,
))
.collect();
let expected = vec![Unit::eoi(7)];
assert_eq!(expected, got);
let got: Vec<Unit> = classes.representatives(..=255).collect();
let expected = vec![
Unit::u8(b'\x00'),
Unit::u8(b'b'),
Unit::u8(b'e'),
Unit::u8(b'g'),
Unit::u8(b'n'),
Unit::u8(b'z'),
Unit::u8(b'\x7B'),
];
assert_eq!(expected, got);
let got: Vec<Unit> = classes.representatives(b'b'..=b'd').collect();
let expected = vec![Unit::u8(b'b')];
assert_eq!(expected, got);
let got: Vec<Unit> = classes.representatives(b'a'..=b'd').collect();
let expected = vec![Unit::u8(b'a'), Unit::u8(b'b')];
assert_eq!(expected, got);
let got: Vec<Unit> = classes.representatives(b'b'..=b'e').collect();
let expected = vec![Unit::u8(b'b'), Unit::u8(b'e')];
assert_eq!(expected, got);
let got: Vec<Unit> = classes.representatives(b'A'..=b'Z').collect();
let expected = vec![Unit::u8(b'A')];
assert_eq!(expected, got);
let got: Vec<Unit> = classes.representatives(b'A'..=b'z').collect();
let expected = vec![
Unit::u8(b'A'),
Unit::u8(b'b'),
Unit::u8(b'e'),
Unit::u8(b'g'),
Unit::u8(b'n'),
Unit::u8(b'z'),
];
assert_eq!(expected, got);
let got: Vec<Unit> = classes.representatives(b'z'..).collect();
let expected = vec![Unit::u8(b'z'), Unit::u8(b'\x7B'), Unit::eoi(7)];
assert_eq!(expected, got);
let got: Vec<Unit> = classes.representatives(b'z'..=0xFF).collect();
let expected = vec![Unit::u8(b'z'), Unit::u8(b'\x7B')];
assert_eq!(expected, got);
}
}