ddnet/src/base/system.cpp
bors[bot] bd3b4f2d50
Merge #5942
5942: Support unicode with ExcHndl, use upstream module offsets, handle errors r=def- a=Robyt3

Update Dr. Mingw (ExcHndl) to 0.9.8.

Use the new `ExcHndlSetLogFileNameW` function to set the exception log file name using wide characters, to support paths containing unicode.

It's not necessary to call `ExcHndlInit` explicitly after loading `exchndl.dll`, as the `DllMain` will already initialize the exception handler when the DLL is loaded. Module offsets are supported by upstream ExcHndl now, so we don't need to provide our own version that supplies the module offset to `ExcHndlInit` anymore. Upstream ExcHndl will also resolve the source code lines for addresses automatically, when the executable is build with debug information.

Handle the cases that the exception handling module cannot be loaded and that the `ExcHndlSetLogFileNameW` function cannot be found in the module.

Update `scripts/parse_drmingw.sh`:

- Parse both old and new module offsets.
- Use tabs instead of spaces consistently.
- Reset the ANSI color after printing colored messages.

Closes #5877.

Needs https://github.com/ddnet/ddnet-libs/pull/34.

Example crash logs:

- [crash_debug_old.RTP.txt](https://github.com/ddnet/ddnet/files/9768008/crash_debug_old.RTP.txt)
- [crash_debug_new.RTP.txt](https://github.com/ddnet/ddnet/files/9768011/crash_debug_new.RTP.txt)
- [crash_release_old.RTP.txt](https://github.com/ddnet/ddnet/files/9768010/crash_release_old.RTP.txt)
- [crash_release_new.RTP.txt](https://github.com/ddnet/ddnet/files/9768009/crash_release_new.RTP.txt)

## Checklist

- [X] Tested the change ingame
- [ ] Provided screenshots if it is a visual change
- [ ] Tested in combination with possibly related configuration options
- [ ] Written a unit test (especially base/) or added coverage to integration test
- [ ] Considered possible null pointers and out of bounds array indexing
- [ ] Changed no physics that affect existing maps
- [ ] Tested the change with [ASan+UBSan or valgrind's memcheck](https://github.com/ddnet/ddnet/#using-addresssanitizer--undefinedbehavioursanitizer-or-valgrinds-memcheck) (optional)


Co-authored-by: Robert Müller <robytemueller@gmail.com>
2022-10-12 21:44:43 +00:00

4287 lines
91 KiB
C++

/* (c) Magnus Auvinen. See licence.txt in the root of the distribution for more information. */
/* If you are missing that file, acquire a complete release at teeworlds.com. */
#include <atomic>
#include <cctype>
#include <cmath>
#include <cstdarg>
#include <cstdio>
#include <cstring>
#include <iterator> // std::size
#include <string_view>
#include "system.h"
#include "lock_scope.h"
#include "logger.h"
#include <sys/types.h>
#include <chrono>
#include <cinttypes>
#if defined(CONF_WEBSOCKETS)
#include <engine/shared/websockets.h>
#endif
#if defined(CONF_FAMILY_UNIX)
#include <csignal>
#include <sys/stat.h>
#include <sys/time.h>
#include <sys/utsname.h>
#include <sys/wait.h>
#include <unistd.h>
/* unix net includes */
#include <arpa/inet.h>
#include <cerrno>
#include <netdb.h>
#include <netinet/in.h>
#include <pthread.h>
#include <sys/ioctl.h>
#include <sys/socket.h>
#include <dirent.h>
#if defined(CONF_PLATFORM_MACOS)
// some lock and pthread functions are already defined in headers
// included from Carbon.h
// this prevents having duplicate definitions of those
#define _lock_set_user_
#define _task_user_
#include <Carbon/Carbon.h>
#include <mach-o/dyld.h>
#include <mach/mach_time.h>
#endif
#elif defined(CONF_FAMILY_WINDOWS)
#define WIN32_LEAN_AND_MEAN
#undef _WIN32_WINNT
#define _WIN32_WINNT 0x0501 /* required for mingw to get getaddrinfo to work */
#include <windows.h>
#include <winsock2.h>
#include <ws2tcpip.h>
#include <cerrno>
#include <float.h>
#include <io.h>
#include <objbase.h>
#include <process.h>
#include <share.h>
#include <shellapi.h>
#include <shlwapi.h>
#include <wincrypt.h>
#else
#error NOT IMPLEMENTED
#endif
#if defined(CONF_PLATFORM_SOLARIS)
#include <sys/filio.h>
#endif
extern "C" {
IOHANDLE io_stdin()
{
return (IOHANDLE)stdin;
}
IOHANDLE io_stdout() { return (IOHANDLE)stdout; }
IOHANDLE io_stderr() { return (IOHANDLE)stderr; }
IOHANDLE io_current_exe()
{
// From https://stackoverflow.com/a/1024937.
#if defined(CONF_FAMILY_WINDOWS)
wchar_t wpath[IO_MAX_PATH_LENGTH];
char path[IO_MAX_PATH_LENGTH];
if(!GetModuleFileNameW(NULL, wpath, std::size(wpath)))
{
return 0;
}
if(!WideCharToMultiByte(CP_UTF8, 0, wpath, -1, path, sizeof(path), NULL, NULL))
{
return 0;
}
return io_open(path, IOFLAG_READ);
#elif defined(CONF_PLATFORM_MACOS)
char path[IO_MAX_PATH_LENGTH];
uint32_t path_size = sizeof(path);
if(_NSGetExecutablePath(path, &path_size))
{
return 0;
}
return io_open(path, IOFLAG_READ);
#else
static const char *NAMES[] = {
"/proc/self/exe", // Linux, Android
"/proc/curproc/exe", // NetBSD
"/proc/curproc/file", // DragonFly
};
for(auto &name : NAMES)
{
IOHANDLE result = io_open(name, IOFLAG_READ);
if(result)
{
return result;
}
}
return 0;
#endif
}
static NETSTATS network_stats = {0};
#define VLEN 128
#define PACKETSIZE 1400
typedef struct
{
#ifdef CONF_PLATFORM_LINUX
int pos;
int size;
struct mmsghdr msgs[VLEN];
struct iovec iovecs[VLEN];
char bufs[VLEN][PACKETSIZE];
char sockaddrs[VLEN][128];
#else
char buf[PACKETSIZE];
#endif
} NETSOCKET_BUFFER;
void net_buffer_init(NETSOCKET_BUFFER *buffer);
void net_buffer_reinit(NETSOCKET_BUFFER *buffer);
void net_buffer_simple(NETSOCKET_BUFFER *buffer, char **buf, int *size);
struct NETSOCKET_INTERNAL
{
int type;
int ipv4sock;
int ipv6sock;
int web_ipv4sock;
NETSOCKET_BUFFER buffer;
};
static NETSOCKET_INTERNAL invalid_socket = {NETTYPE_INVALID, -1, -1, -1};
#define AF_WEBSOCKET_INET (0xee)
std::atomic_bool dbg_assert_failing = false;
bool dbg_assert_has_failed()
{
return dbg_assert_failing.load(std::memory_order_acquire);
}
void dbg_assert_imp(const char *filename, int line, int test, const char *msg)
{
if(!test)
{
dbg_assert_failing.store(true, std::memory_order_release);
dbg_msg("assert", "%s(%d): %s", filename, line, msg);
log_global_logger_finish();
dbg_break();
}
}
void dbg_break()
{
#ifdef __GNUC__
__builtin_trap();
#else
abort();
#endif
}
void dbg_msg(const char *sys, const char *fmt, ...)
{
va_list args;
va_start(args, fmt);
log_log_v(LEVEL_INFO, sys, fmt, args);
va_end(args);
}
/* */
void mem_copy(void *dest, const void *source, unsigned size)
{
memcpy(dest, source, size);
}
void mem_move(void *dest, const void *source, unsigned size)
{
memmove(dest, source, size);
}
void mem_zero(void *block, unsigned size)
{
memset(block, 0, size);
}
IOHANDLE io_open_impl(const char *filename, int flags)
{
dbg_assert(flags == (IOFLAG_READ | IOFLAG_SKIP_BOM) || flags == IOFLAG_READ || flags == IOFLAG_WRITE || flags == IOFLAG_APPEND, "flags must be read, read+skipbom, write or append");
#if defined(CONF_FAMILY_WINDOWS)
WCHAR wBuffer[IO_MAX_PATH_LENGTH];
MultiByteToWideChar(CP_UTF8, 0, filename, -1, wBuffer, std::size(wBuffer));
if((flags & IOFLAG_READ) != 0)
return (IOHANDLE)_wfsopen(wBuffer, L"rb", _SH_DENYNO);
if(flags == IOFLAG_WRITE)
return (IOHANDLE)_wfsopen(wBuffer, L"wb", _SH_DENYNO);
if(flags == IOFLAG_APPEND)
return (IOHANDLE)_wfsopen(wBuffer, L"ab", _SH_DENYNO);
return 0x0;
#else
if((flags & IOFLAG_READ) != 0)
return (IOHANDLE)fopen(filename, "rb");
if(flags == IOFLAG_WRITE)
return (IOHANDLE)fopen(filename, "wb");
if(flags == IOFLAG_APPEND)
return (IOHANDLE)fopen(filename, "ab");
return 0x0;
#endif
}
IOHANDLE io_open(const char *filename, int flags)
{
IOHANDLE result = io_open_impl(filename, flags);
unsigned char buf[3];
if((flags & IOFLAG_SKIP_BOM) == 0 || !result)
{
return result;
}
if(io_read(result, buf, sizeof(buf)) != 3 || buf[0] != 0xef || buf[1] != 0xbb || buf[2] != 0xbf)
{
io_seek(result, 0, IOSEEK_START);
}
return result;
}
unsigned io_read(IOHANDLE io, void *buffer, unsigned size)
{
return fread(buffer, 1, size, (FILE *)io);
}
void io_read_all(IOHANDLE io, void **result, unsigned *result_len)
{
long signed_len = io_length(io);
unsigned len = signed_len < 0 ? 1024 : (unsigned)signed_len; // use default initial size if we couldn't get the length
char *buffer = (char *)malloc(len + 1);
unsigned read = io_read(io, buffer, len + 1); // +1 to check if the file size is larger than expected
if(read < len)
{
buffer = (char *)realloc(buffer, read + 1);
len = read;
}
else if(read > len)
{
unsigned cap = 2 * read;
len = read;
buffer = (char *)realloc(buffer, cap);
while((read = io_read(io, buffer + len, cap - len)) != 0)
{
len += read;
if(len == cap)
{
cap *= 2;
buffer = (char *)realloc(buffer, cap);
}
}
buffer = (char *)realloc(buffer, len + 1);
}
buffer[len] = 0;
*result = buffer;
*result_len = len;
}
char *io_read_all_str(IOHANDLE io)
{
void *buffer;
unsigned len;
io_read_all(io, &buffer, &len);
if(mem_has_null(buffer, len))
{
free(buffer);
return nullptr;
}
return (char *)buffer;
}
unsigned io_skip(IOHANDLE io, int size)
{
fseek((FILE *)io, size, SEEK_CUR);
return size;
}
int io_seek(IOHANDLE io, int offset, int origin)
{
int real_origin;
switch(origin)
{
case IOSEEK_START:
real_origin = SEEK_SET;
break;
case IOSEEK_CUR:
real_origin = SEEK_CUR;
break;
case IOSEEK_END:
real_origin = SEEK_END;
break;
default:
return -1;
}
return fseek((FILE *)io, offset, real_origin);
}
long int io_tell(IOHANDLE io)
{
return ftell((FILE *)io);
}
long int io_length(IOHANDLE io)
{
long int length;
io_seek(io, 0, IOSEEK_END);
length = io_tell(io);
io_seek(io, 0, IOSEEK_START);
return length;
}
int io_error(IOHANDLE io)
{
return ferror((FILE *)io);
}
unsigned io_write(IOHANDLE io, const void *buffer, unsigned size)
{
return fwrite(buffer, 1, size, (FILE *)io);
}
unsigned io_write_newline(IOHANDLE io)
{
#if defined(CONF_FAMILY_WINDOWS)
return fwrite("\r\n", 1, 2, (FILE *)io);
#else
return fwrite("\n", 1, 1, (FILE *)io);
#endif
}
int io_close(IOHANDLE io)
{
return fclose((FILE *)io) != 0;
}
int io_flush(IOHANDLE io)
{
return fflush((FILE *)io);
}
int io_sync(IOHANDLE io)
{
if(io_flush(io))
{
return 1;
}
#if defined(CONF_FAMILY_WINDOWS)
return FlushFileBuffers((HANDLE)_get_osfhandle(_fileno((FILE *)io))) == 0;
#else
return fsync(fileno((FILE *)io)) != 0;
#endif
}
#define ASYNC_BUFSIZE (8 * 1024)
#define ASYNC_LOCAL_BUFSIZE (64 * 1024)
// TODO: Use Thread Safety Analysis when this file is converted to C++
struct ASYNCIO
{
LOCK lock;
IOHANDLE io;
SEMAPHORE sphore;
void *thread;
unsigned char *buffer;
unsigned int buffer_size;
unsigned int read_pos;
unsigned int write_pos;
int error;
unsigned char finish;
unsigned char refcount;
};
enum
{
ASYNCIO_RUNNING,
ASYNCIO_CLOSE,
ASYNCIO_EXIT,
};
struct BUFFERS
{
unsigned char *buf1;
unsigned int len1;
unsigned char *buf2;
unsigned int len2;
};
static void buffer_ptrs(ASYNCIO *aio, struct BUFFERS *buffers)
{
mem_zero(buffers, sizeof(*buffers));
if(aio->read_pos < aio->write_pos)
{
buffers->buf1 = aio->buffer + aio->read_pos;
buffers->len1 = aio->write_pos - aio->read_pos;
}
else if(aio->read_pos > aio->write_pos)
{
buffers->buf1 = aio->buffer + aio->read_pos;
buffers->len1 = aio->buffer_size - aio->read_pos;
buffers->buf2 = aio->buffer;
buffers->len2 = aio->write_pos;
}
}
static void aio_handle_free_and_unlock(ASYNCIO *aio) RELEASE(aio->lock)
{
int do_free;
aio->refcount--;
do_free = aio->refcount == 0;
lock_unlock(aio->lock);
if(do_free)
{
free(aio->buffer);
sphore_destroy(&aio->sphore);
lock_destroy(aio->lock);
free(aio);
}
}
static void aio_thread(void *user)
{
ASYNCIO *aio = (ASYNCIO *)user;
lock_wait(aio->lock);
while(true)
{
struct BUFFERS buffers;
int result_io_error;
unsigned char local_buffer[ASYNC_LOCAL_BUFSIZE];
unsigned int local_buffer_len = 0;
if(aio->read_pos == aio->write_pos)
{
if(aio->finish != ASYNCIO_RUNNING)
{
if(aio->finish == ASYNCIO_CLOSE)
{
io_close(aio->io);
}
aio_handle_free_and_unlock(aio);
break;
}
lock_unlock(aio->lock);
sphore_wait(&aio->sphore);
lock_wait(aio->lock);
continue;
}
buffer_ptrs(aio, &buffers);
if(buffers.buf1)
{
if(buffers.len1 > sizeof(local_buffer) - local_buffer_len)
{
buffers.len1 = sizeof(local_buffer) - local_buffer_len;
}
mem_copy(local_buffer + local_buffer_len, buffers.buf1, buffers.len1);
local_buffer_len += buffers.len1;
if(buffers.buf2)
{
if(buffers.len2 > sizeof(local_buffer) - local_buffer_len)
{
buffers.len2 = sizeof(local_buffer) - local_buffer_len;
}
mem_copy(local_buffer + local_buffer_len, buffers.buf2, buffers.len2);
local_buffer_len += buffers.len2;
}
}
aio->read_pos = (aio->read_pos + buffers.len1 + buffers.len2) % aio->buffer_size;
lock_unlock(aio->lock);
io_write(aio->io, local_buffer, local_buffer_len);
io_flush(aio->io);
result_io_error = io_error(aio->io);
lock_wait(aio->lock);
aio->error = result_io_error;
}
}
ASYNCIO *aio_new(IOHANDLE io)
{
ASYNCIO *aio = (ASYNCIO *)malloc(sizeof(*aio));
if(!aio)
{
return 0;
}
aio->io = io;
aio->lock = lock_create();
sphore_init(&aio->sphore);
aio->thread = 0;
aio->buffer = (unsigned char *)malloc(ASYNC_BUFSIZE);
if(!aio->buffer)
{
sphore_destroy(&aio->sphore);
lock_destroy(aio->lock);
free(aio);
return 0;
}
aio->buffer_size = ASYNC_BUFSIZE;
aio->read_pos = 0;
aio->write_pos = 0;
aio->error = 0;
aio->finish = ASYNCIO_RUNNING;
aio->refcount = 2;
aio->thread = thread_init(aio_thread, aio, "aio");
if(!aio->thread)
{
free(aio->buffer);
sphore_destroy(&aio->sphore);
lock_destroy(aio->lock);
free(aio);
return 0;
}
return aio;
}
static unsigned int buffer_len(ASYNCIO *aio)
{
if(aio->write_pos >= aio->read_pos)
{
return aio->write_pos - aio->read_pos;
}
else
{
return aio->buffer_size + aio->write_pos - aio->read_pos;
}
}
static unsigned int next_buffer_size(unsigned int cur_size, unsigned int need_size)
{
while(cur_size < need_size)
{
cur_size *= 2;
}
return cur_size;
}
void aio_lock(ASYNCIO *aio) ACQUIRE(aio->lock)
{
lock_wait(aio->lock);
}
void aio_unlock(ASYNCIO *aio) RELEASE(aio->lock)
{
lock_unlock(aio->lock);
sphore_signal(&aio->sphore);
}
void aio_write_unlocked(ASYNCIO *aio, const void *buffer, unsigned size)
{
unsigned int remaining;
remaining = aio->buffer_size - buffer_len(aio);
// Don't allow full queue to distinguish between empty and full queue.
if(size < remaining)
{
unsigned int remaining_contiguous = aio->buffer_size - aio->write_pos;
if(size > remaining_contiguous)
{
mem_copy(aio->buffer + aio->write_pos, buffer, remaining_contiguous);
size -= remaining_contiguous;
buffer = ((unsigned char *)buffer) + remaining_contiguous;
aio->write_pos = 0;
}
mem_copy(aio->buffer + aio->write_pos, buffer, size);
aio->write_pos = (aio->write_pos + size) % aio->buffer_size;
}
else
{
// Add 1 so the new buffer isn't completely filled.
unsigned int new_written = buffer_len(aio) + size + 1;
unsigned int next_size = next_buffer_size(aio->buffer_size, new_written);
unsigned int next_len = 0;
unsigned char *next_buffer = (unsigned char *)malloc(next_size);
struct BUFFERS buffers;
buffer_ptrs(aio, &buffers);
if(buffers.buf1)
{
mem_copy(next_buffer + next_len, buffers.buf1, buffers.len1);
next_len += buffers.len1;
if(buffers.buf2)
{
mem_copy(next_buffer + next_len, buffers.buf2, buffers.len2);
next_len += buffers.len2;
}
}
mem_copy(next_buffer + next_len, buffer, size);
next_len += size;
free(aio->buffer);
aio->buffer = next_buffer;
aio->buffer_size = next_size;
aio->read_pos = 0;
aio->write_pos = next_len;
}
}
void aio_write(ASYNCIO *aio, const void *buffer, unsigned size)
{
aio_lock(aio);
aio_write_unlocked(aio, buffer, size);
aio_unlock(aio);
}
void aio_write_newline_unlocked(ASYNCIO *aio)
{
#if defined(CONF_FAMILY_WINDOWS)
aio_write_unlocked(aio, "\r\n", 2);
#else
aio_write_unlocked(aio, "\n", 1);
#endif
}
void aio_write_newline(ASYNCIO *aio)
{
aio_lock(aio);
aio_write_newline_unlocked(aio);
aio_unlock(aio);
}
int aio_error(ASYNCIO *aio)
{
CLockScope ls(aio->lock);
return aio->error;
}
void aio_free(ASYNCIO *aio)
{
lock_wait(aio->lock);
if(aio->thread)
{
thread_detach(aio->thread);
aio->thread = 0;
}
aio_handle_free_and_unlock(aio);
}
void aio_close(ASYNCIO *aio)
{
{
CLockScope ls(aio->lock);
aio->finish = ASYNCIO_CLOSE;
}
sphore_signal(&aio->sphore);
}
void aio_wait(ASYNCIO *aio)
{
void *thread;
{
CLockScope ls(aio->lock);
thread = aio->thread;
aio->thread = 0;
if(aio->finish == ASYNCIO_RUNNING)
{
aio->finish = ASYNCIO_EXIT;
}
}
sphore_signal(&aio->sphore);
thread_wait(thread);
}
struct THREAD_RUN
{
void (*threadfunc)(void *);
void *u;
};
#if defined(CONF_FAMILY_UNIX)
static void *thread_run(void *user)
#elif defined(CONF_FAMILY_WINDOWS)
static unsigned long __stdcall thread_run(void *user)
#else
#error not implemented
#endif
{
#if defined(CONF_FAMILY_WINDOWS)
CWindowsComLifecycle WindowsComLifecycle(false);
#endif
struct THREAD_RUN *data = (THREAD_RUN *)user;
void (*threadfunc)(void *) = data->threadfunc;
void *u = data->u;
free(data);
threadfunc(u);
return 0;
}
void *thread_init(void (*threadfunc)(void *), void *u, const char *name)
{
struct THREAD_RUN *data = (THREAD_RUN *)malloc(sizeof(*data));
data->threadfunc = threadfunc;
data->u = u;
#if defined(CONF_FAMILY_UNIX)
{
pthread_t id;
pthread_attr_t attr;
pthread_attr_init(&attr);
#if defined(CONF_PLATFORM_MACOS)
pthread_attr_set_qos_class_np(&attr, QOS_CLASS_USER_INTERACTIVE, 0);
#endif
int result = pthread_create(&id, &attr, thread_run, data);
if(result != 0)
{
dbg_msg("thread", "creating %s thread failed: %d", name, result);
return 0;
}
return (void *)id;
}
#elif defined(CONF_FAMILY_WINDOWS)
return CreateThread(NULL, 0, thread_run, data, 0, NULL);
#else
#error not implemented
#endif
}
void thread_wait(void *thread)
{
#if defined(CONF_FAMILY_UNIX)
int result = pthread_join((pthread_t)thread, NULL);
if(result != 0)
dbg_msg("thread", "!! %d", result);
#elif defined(CONF_FAMILY_WINDOWS)
WaitForSingleObject((HANDLE)thread, INFINITE);
CloseHandle(thread);
#else
#error not implemented
#endif
}
void thread_yield()
{
#if defined(CONF_FAMILY_UNIX)
int result = sched_yield();
if(result != 0)
dbg_msg("thread", "yield failed: %d", errno);
#elif defined(CONF_FAMILY_WINDOWS)
Sleep(0);
#else
#error not implemented
#endif
}
void thread_detach(void *thread)
{
#if defined(CONF_FAMILY_UNIX)
int result = pthread_detach((pthread_t)(thread));
if(result != 0)
dbg_msg("thread", "detach failed: %d", result);
#elif defined(CONF_FAMILY_WINDOWS)
CloseHandle(thread);
#else
#error not implemented
#endif
}
void *thread_init_and_detach(void (*threadfunc)(void *), void *u, const char *name)
{
void *thread = thread_init(threadfunc, u, name);
if(thread)
thread_detach(thread);
return thread;
}
#if defined(CONF_FAMILY_UNIX)
typedef pthread_mutex_t LOCKINTERNAL;
#elif defined(CONF_FAMILY_WINDOWS)
typedef CRITICAL_SECTION LOCKINTERNAL;
#else
#error not implemented on this platform
#endif
LOCK lock_create()
{
LOCKINTERNAL *lock = (LOCKINTERNAL *)malloc(sizeof(*lock));
#if defined(CONF_FAMILY_UNIX)
int result;
#endif
if(!lock)
return 0;
#if defined(CONF_FAMILY_UNIX)
result = pthread_mutex_init(lock, 0x0);
if(result != 0)
{
dbg_msg("lock", "init failed: %d", result);
free(lock);
return 0;
}
#elif defined(CONF_FAMILY_WINDOWS)
InitializeCriticalSection((LPCRITICAL_SECTION)lock);
#else
#error not implemented on this platform
#endif
return (LOCK)lock;
}
void lock_destroy(LOCK lock)
{
#if defined(CONF_FAMILY_UNIX)
int result = pthread_mutex_destroy((LOCKINTERNAL *)lock);
if(result != 0)
dbg_msg("lock", "destroy failed: %d", result);
#elif defined(CONF_FAMILY_WINDOWS)
DeleteCriticalSection((LPCRITICAL_SECTION)lock);
#else
#error not implemented on this platform
#endif
free(lock);
}
int lock_trylock(LOCK lock)
{
#if defined(CONF_FAMILY_UNIX)
return pthread_mutex_trylock((LOCKINTERNAL *)lock);
#elif defined(CONF_FAMILY_WINDOWS)
return !TryEnterCriticalSection((LPCRITICAL_SECTION)lock);
#else
#error not implemented on this platform
#endif
}
#ifdef __clang__
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wthread-safety-analysis"
#endif
void lock_wait(LOCK lock)
{
#if defined(CONF_FAMILY_UNIX)
int result = pthread_mutex_lock((LOCKINTERNAL *)lock);
if(result != 0)
dbg_msg("lock", "lock failed: %d", result);
#elif defined(CONF_FAMILY_WINDOWS)
EnterCriticalSection((LPCRITICAL_SECTION)lock);
#else
#error not implemented on this platform
#endif
}
void lock_unlock(LOCK lock)
{
#if defined(CONF_FAMILY_UNIX)
int result = pthread_mutex_unlock((LOCKINTERNAL *)lock);
if(result != 0)
dbg_msg("lock", "unlock failed: %d", result);
#elif defined(CONF_FAMILY_WINDOWS)
LeaveCriticalSection((LPCRITICAL_SECTION)lock);
#else
#error not implemented on this platform
#endif
}
#ifdef __clang__
#pragma clang diagnostic pop
#endif
#if defined(CONF_FAMILY_WINDOWS)
void sphore_init(SEMAPHORE *sem)
{
*sem = CreateSemaphore(0, 0, 10000, 0);
}
void sphore_wait(SEMAPHORE *sem) { WaitForSingleObject((HANDLE)*sem, INFINITE); }
void sphore_signal(SEMAPHORE *sem) { ReleaseSemaphore((HANDLE)*sem, 1, NULL); }
void sphore_destroy(SEMAPHORE *sem) { CloseHandle((HANDLE)*sem); }
#elif defined(CONF_PLATFORM_MACOS)
void sphore_init(SEMAPHORE *sem)
{
char aBuf[64];
str_format(aBuf, sizeof(aBuf), "%p", (void *)sem);
*sem = sem_open(aBuf, O_CREAT | O_EXCL, S_IRWXU | S_IRWXG, 0);
if(*sem == SEM_FAILED)
dbg_msg("sphore", "init failed: %d", errno);
}
void sphore_wait(SEMAPHORE *sem) { sem_wait(*sem); }
void sphore_signal(SEMAPHORE *sem) { sem_post(*sem); }
void sphore_destroy(SEMAPHORE *sem)
{
char aBuf[64];
sem_close(*sem);
str_format(aBuf, sizeof(aBuf), "%p", (void *)sem);
sem_unlink(aBuf);
}
#elif defined(CONF_FAMILY_UNIX)
void sphore_init(SEMAPHORE *sem)
{
if(sem_init(sem, 0, 0) != 0)
dbg_msg("sphore", "init failed: %d", errno);
}
void sphore_wait(SEMAPHORE *sem)
{
if(sem_wait(sem) != 0)
dbg_msg("sphore", "wait failed: %d", errno);
}
void sphore_signal(SEMAPHORE *sem)
{
if(sem_post(sem) != 0)
dbg_msg("sphore", "post failed: %d", errno);
}
void sphore_destroy(SEMAPHORE *sem)
{
if(sem_destroy(sem) != 0)
dbg_msg("sphore", "destroy failed: %d", errno);
}
#endif
static int new_tick = -1;
void set_new_tick()
{
new_tick = 1;
}
/* ----- time ----- */
static_assert(std::chrono::steady_clock::is_steady, "Compiler does not support steady clocks, it might be out of date.");
static_assert(std::chrono::steady_clock::period::den / std::chrono::steady_clock::period::num >= 1000000000, "Compiler has a bad timer precision and might be out of date.");
static const std::chrono::time_point<std::chrono::steady_clock> tw_start_time = std::chrono::steady_clock::now();
int64_t time_get_impl()
{
return std::chrono::duration_cast<std::chrono::nanoseconds>(std::chrono::steady_clock::now() - tw_start_time).count();
}
int64_t time_get()
{
static int64_t last = 0;
if(new_tick == 0)
return last;
if(new_tick != -1)
new_tick = 0;
last = time_get_impl();
return last;
}
int64_t time_freq()
{
using namespace std::chrono_literals;
return std::chrono::nanoseconds(1s).count();
}
/* ----- network ----- */
static void netaddr_to_sockaddr_in(const NETADDR *src, struct sockaddr_in *dest)
{
mem_zero(dest, sizeof(struct sockaddr_in));
if(src->type != NETTYPE_IPV4 && src->type != NETTYPE_WEBSOCKET_IPV4)
{
dbg_msg("system", "couldn't convert NETADDR of type %d to ipv4", src->type);
return;
}
dest->sin_family = AF_INET;
dest->sin_port = htons(src->port);
mem_copy(&dest->sin_addr.s_addr, src->ip, 4);
}
static void netaddr_to_sockaddr_in6(const NETADDR *src, struct sockaddr_in6 *dest)
{
mem_zero(dest, sizeof(struct sockaddr_in6));
if(src->type != NETTYPE_IPV6)
{
dbg_msg("system", "couldn't not convert NETADDR of type %d to ipv6", src->type);
return;
}
dest->sin6_family = AF_INET6;
dest->sin6_port = htons(src->port);
mem_copy(&dest->sin6_addr.s6_addr, src->ip, 16);
}
static void sockaddr_to_netaddr(const struct sockaddr *src, NETADDR *dst)
{
// Filled by accept, clang-analyzer probably can't tell because of the
// (struct sockaddr *) cast.
if(src->sa_family == AF_INET) // NOLINT(clang-analyzer-core.UndefinedBinaryOperatorResult)
{
mem_zero(dst, sizeof(NETADDR));
dst->type = NETTYPE_IPV4;
dst->port = htons(((struct sockaddr_in *)src)->sin_port);
mem_copy(dst->ip, &((struct sockaddr_in *)src)->sin_addr.s_addr, 4);
}
else if(src->sa_family == AF_WEBSOCKET_INET)
{
mem_zero(dst, sizeof(NETADDR));
dst->type = NETTYPE_WEBSOCKET_IPV4;
dst->port = htons(((struct sockaddr_in *)src)->sin_port);
mem_copy(dst->ip, &((struct sockaddr_in *)src)->sin_addr.s_addr, 4);
}
else if(src->sa_family == AF_INET6)
{
mem_zero(dst, sizeof(NETADDR));
dst->type = NETTYPE_IPV6;
dst->port = htons(((struct sockaddr_in6 *)src)->sin6_port);
mem_copy(dst->ip, &((struct sockaddr_in6 *)src)->sin6_addr.s6_addr, 16);
}
else
{
mem_zero(dst, sizeof(struct sockaddr));
dbg_msg("system", "couldn't convert sockaddr of family %d", src->sa_family);
}
}
int net_addr_comp(const NETADDR *a, const NETADDR *b)
{
return mem_comp(a, b, sizeof(NETADDR));
}
bool NETADDR::operator==(const NETADDR &other) const
{
return net_addr_comp(this, &other) == 0;
}
int net_addr_comp_noport(const NETADDR *a, const NETADDR *b)
{
NETADDR ta = *a, tb = *b;
ta.port = tb.port = 0;
return net_addr_comp(&ta, &tb);
}
void net_addr_str_v6(const unsigned short ip[8], int port, char *buffer, int buffer_size)
{
int longest_seq_len = 0;
int longest_seq_start = -1;
int w = 0;
int i;
{
int seq_len = 0;
int seq_start = -1;
// Determine longest sequence of zeros.
for(i = 0; i < 8 + 1; i++)
{
if(seq_start != -1)
{
if(i == 8 || ip[i] != 0)
{
if(longest_seq_len < seq_len)
{
longest_seq_len = seq_len;
longest_seq_start = seq_start;
}
seq_len = 0;
seq_start = -1;
}
else
{
seq_len += 1;
}
}
else
{
if(i != 8 && ip[i] == 0)
{
seq_start = i;
seq_len = 1;
}
}
}
}
if(longest_seq_len <= 1)
{
longest_seq_len = 0;
longest_seq_start = -1;
}
w += str_format(buffer + w, buffer_size - w, "[");
for(i = 0; i < 8; i++)
{
if(longest_seq_start <= i && i < longest_seq_start + longest_seq_len)
{
if(i == longest_seq_start)
{
w += str_format(buffer + w, buffer_size - w, "::");
}
}
else
{
const char *colon = (i == 0 || i == longest_seq_start + longest_seq_len) ? "" : ":";
w += str_format(buffer + w, buffer_size - w, "%s%x", colon, ip[i]);
}
}
w += str_format(buffer + w, buffer_size - w, "]");
if(port >= 0)
{
str_format(buffer + w, buffer_size - w, ":%d", port);
}
}
void net_addr_str(const NETADDR *addr, char *string, int max_length, int add_port)
{
if(addr->type == NETTYPE_IPV4 || addr->type == NETTYPE_WEBSOCKET_IPV4)
{
if(add_port != 0)
str_format(string, max_length, "%d.%d.%d.%d:%d", addr->ip[0], addr->ip[1], addr->ip[2], addr->ip[3], addr->port);
else
str_format(string, max_length, "%d.%d.%d.%d", addr->ip[0], addr->ip[1], addr->ip[2], addr->ip[3]);
}
else if(addr->type == NETTYPE_IPV6)
{
int port = -1;
unsigned short ip[8];
int i;
if(add_port)
{
port = addr->port;
}
for(i = 0; i < 8; i++)
{
ip[i] = (addr->ip[i * 2] << 8) | (addr->ip[i * 2 + 1]);
}
net_addr_str_v6(ip, port, string, max_length);
}
else
str_format(string, max_length, "unknown type %d", addr->type);
}
static int priv_net_extract(const char *hostname, char *host, int max_host, int *port)
{
int i;
*port = 0;
host[0] = 0;
if(hostname[0] == '[')
{
// ipv6 mode
for(i = 1; i < max_host && hostname[i] && hostname[i] != ']'; i++)
host[i - 1] = hostname[i];
host[i - 1] = 0;
if(hostname[i] != ']') // malformatted
return -1;
i++;
if(hostname[i] == ':')
*port = atol(hostname + i + 1);
}
else
{
// generic mode (ipv4, hostname etc)
for(i = 0; i < max_host - 1 && hostname[i] && hostname[i] != ':'; i++)
host[i] = hostname[i];
host[i] = 0;
if(hostname[i] == ':')
*port = atol(hostname + i + 1);
}
return 0;
}
int net_host_lookup_impl(const char *hostname, NETADDR *addr, int types)
{
struct addrinfo hints;
struct addrinfo *result = NULL;
int e;
char host[256];
int port = 0;
if(priv_net_extract(hostname, host, sizeof(host), &port))
return -1;
dbg_msg("host_lookup", "host='%s' port=%d %d", host, port, types);
mem_zero(&hints, sizeof(hints));
hints.ai_family = AF_UNSPEC;
if(types == NETTYPE_IPV4)
hints.ai_family = AF_INET;
else if(types == NETTYPE_IPV6)
hints.ai_family = AF_INET6;
e = getaddrinfo(host, NULL, &hints, &result);
if(!result)
return -1;
if(e != 0)
{
freeaddrinfo(result);
return -1;
}
sockaddr_to_netaddr(result->ai_addr, addr);
addr->port = port;
freeaddrinfo(result);
return 0;
}
int net_host_lookup(const char *hostname, NETADDR *addr, int types)
{
const char *ws_hostname = str_startswith(hostname, "ws://");
if(ws_hostname)
{
if((types & NETTYPE_WEBSOCKET_IPV4) == 0)
{
return -1;
}
int result = net_host_lookup_impl(ws_hostname, addr, NETTYPE_IPV4);
if(result == 0 && addr->type == NETTYPE_IPV4)
{
addr->type = NETTYPE_WEBSOCKET_IPV4;
}
return result;
}
return net_host_lookup_impl(hostname, addr, types & ~NETTYPE_WEBSOCKET_IPV4);
}
static int parse_int(int *out, const char **str)
{
int i = 0;
*out = 0;
if(**str < '0' || **str > '9')
return -1;
i = **str - '0';
(*str)++;
while(true)
{
if(**str < '0' || **str > '9')
{
*out = i;
return 0;
}
i = (i * 10) + (**str - '0');
(*str)++;
}
return 0;
}
static int parse_char(char c, const char **str)
{
if(**str != c)
return -1;
(*str)++;
return 0;
}
static int parse_uint8(unsigned char *out, const char **str)
{
int i;
if(parse_int(&i, str) != 0)
return -1;
if(i < 0 || i > 0xff)
return -1;
*out = i;
return 0;
}
static int parse_uint16(unsigned short *out, const char **str)
{
int i;
if(parse_int(&i, str) != 0)
return -1;
if(i < 0 || i > 0xffff)
return -1;
*out = i;
return 0;
}
int net_addr_from_str(NETADDR *addr, const char *string)
{
const char *str = string;
mem_zero(addr, sizeof(NETADDR));
if(str[0] == '[')
{
/* ipv6 */
struct sockaddr_in6 sa6;
char buf[128];
int i;
str++;
for(i = 0; i < 127 && str[i] && str[i] != ']'; i++)
buf[i] = str[i];
buf[i] = 0;
str += i;
#if defined(CONF_FAMILY_WINDOWS)
{
int size;
sa6.sin6_family = AF_INET6;
size = (int)sizeof(sa6);
if(WSAStringToAddressA(buf, AF_INET6, NULL, (struct sockaddr *)&sa6, &size) != 0)
return -1;
}
#else
sa6.sin6_family = AF_INET6;
if(inet_pton(AF_INET6, buf, &sa6.sin6_addr) != 1)
return -1;
#endif
sockaddr_to_netaddr((struct sockaddr *)&sa6, addr);
if(*str == ']')
{
str++;
if(*str == ':')
{
str++;
if(parse_uint16(&addr->port, &str))
return -1;
}
else
{
addr->port = 0;
}
}
else
return -1;
return 0;
}
else
{
/* ipv4 */
if(parse_uint8(&addr->ip[0], &str))
return -1;
if(parse_char('.', &str))
return -1;
if(parse_uint8(&addr->ip[1], &str))
return -1;
if(parse_char('.', &str))
return -1;
if(parse_uint8(&addr->ip[2], &str))
return -1;
if(parse_char('.', &str))
return -1;
if(parse_uint8(&addr->ip[3], &str))
return -1;
if(*str == ':')
{
str++;
if(parse_uint16(&addr->port, &str))
return -1;
}
if(*str != '\0')
return -1;
addr->type = NETTYPE_IPV4;
}
return 0;
}
static void priv_net_close_socket(int sock)
{
#if defined(CONF_FAMILY_WINDOWS)
closesocket(sock);
#else
if(close(sock) != 0)
dbg_msg("socket", "close failed: %d", errno);
#endif
}
static int priv_net_close_all_sockets(NETSOCKET sock)
{
/* close down ipv4 */
if(sock->ipv4sock >= 0)
{
priv_net_close_socket(sock->ipv4sock);
sock->ipv4sock = -1;
sock->type &= ~NETTYPE_IPV4;
}
#if defined(CONF_WEBSOCKETS)
/* close down websocket_ipv4 */
if(sock->web_ipv4sock >= 0)
{
websocket_destroy(sock->web_ipv4sock);
sock->web_ipv4sock = -1;
sock->type &= ~NETTYPE_WEBSOCKET_IPV4;
}
#endif
/* close down ipv6 */
if(sock->ipv6sock >= 0)
{
priv_net_close_socket(sock->ipv6sock);
sock->ipv6sock = -1;
sock->type &= ~NETTYPE_IPV6;
}
free(sock);
return 0;
}
static int priv_net_create_socket(int domain, int type, struct sockaddr *addr, int sockaddrlen)
{
int sock, e;
/* create socket */
sock = socket(domain, type, 0);
if(sock < 0)
{
#if defined(CONF_FAMILY_WINDOWS)
char buf[128];
WCHAR wBuffer[128];
int error = WSAGetLastError();
if(FormatMessageW(FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS, 0, error, 0, wBuffer, std::size(wBuffer), 0) == 0)
wBuffer[0] = 0;
WideCharToMultiByte(CP_UTF8, 0, wBuffer, -1, buf, sizeof(buf), NULL, NULL);
dbg_msg("net", "failed to create socket with domain %d and type %d (%d '%s')", domain, type, error, buf);
#else
dbg_msg("net", "failed to create socket with domain %d and type %d (%d '%s')", domain, type, errno, strerror(errno));
#endif
return -1;
}
#if defined(CONF_FAMILY_UNIX)
/* on tcp sockets set SO_REUSEADDR
to fix port rebind on restart */
if(domain == AF_INET && type == SOCK_STREAM)
{
int option = 1;
if(setsockopt(sock, SOL_SOCKET, SO_REUSEADDR, &option, sizeof(option)) != 0)
dbg_msg("socket", "Setting SO_REUSEADDR failed: %d", errno);
}
#endif
/* set to IPv6 only if that's what we are creating */
#if defined(IPV6_V6ONLY) /* windows sdk 6.1 and higher */
if(domain == AF_INET6)
{
int ipv6only = 1;
if(setsockopt(sock, IPPROTO_IPV6, IPV6_V6ONLY, (const char *)&ipv6only, sizeof(ipv6only)) != 0)
dbg_msg("socket", "Setting V6ONLY failed: %d", errno);
}
#endif
/* bind the socket */
e = bind(sock, addr, sockaddrlen);
if(e != 0)
{
#if defined(CONF_FAMILY_WINDOWS)
char buf[128];
WCHAR wBuffer[128];
int error = WSAGetLastError();
if(FormatMessageW(FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS, 0, error, 0, wBuffer, std::size(wBuffer), 0) == 0)
wBuffer[0] = 0;
WideCharToMultiByte(CP_UTF8, 0, wBuffer, -1, buf, sizeof(buf), NULL, NULL);
dbg_msg("net", "failed to bind socket with domain %d and type %d (%d '%s')", domain, type, error, buf);
#else
dbg_msg("net", "failed to bind socket with domain %d and type %d (%d '%s')", domain, type, errno, strerror(errno));
#endif
priv_net_close_socket(sock);
return -1;
}
/* return the newly created socket */
return sock;
}
int net_socket_type(NETSOCKET sock)
{
return sock->type;
}
NETSOCKET net_udp_create(NETADDR bindaddr)
{
NETSOCKET sock = (NETSOCKET_INTERNAL *)malloc(sizeof(*sock));
*sock = invalid_socket;
NETADDR tmpbindaddr = bindaddr;
int broadcast = 1;
int socket = -1;
if(bindaddr.type & NETTYPE_IPV4)
{
struct sockaddr_in addr;
/* bind, we should check for error */
tmpbindaddr.type = NETTYPE_IPV4;
netaddr_to_sockaddr_in(&tmpbindaddr, &addr);
socket = priv_net_create_socket(AF_INET, SOCK_DGRAM, (struct sockaddr *)&addr, sizeof(addr));
if(socket >= 0)
{
sock->type |= NETTYPE_IPV4;
sock->ipv4sock = socket;
/* set broadcast */
if(setsockopt(socket, SOL_SOCKET, SO_BROADCAST, (const char *)&broadcast, sizeof(broadcast)) != 0)
dbg_msg("socket", "Setting BROADCAST on ipv4 failed: %d", errno);
{
/* set DSCP/TOS */
int iptos = 0x10 /* IPTOS_LOWDELAY */;
//int iptos = 46; /* High Priority */
if(setsockopt(socket, IPPROTO_IP, IP_TOS, (char *)&iptos, sizeof(iptos)) != 0)
dbg_msg("socket", "Setting TOS on ipv4 failed: %d", errno);
}
}
}
#if defined(CONF_WEBSOCKETS)
if(bindaddr.type & NETTYPE_WEBSOCKET_IPV4)
{
char addr_str[NETADDR_MAXSTRSIZE];
/* bind, we should check for error */
tmpbindaddr.type = NETTYPE_WEBSOCKET_IPV4;
net_addr_str(&tmpbindaddr, addr_str, sizeof(addr_str), 0);
socket = websocket_create(addr_str, tmpbindaddr.port);
if(socket >= 0)
{
sock->type |= NETTYPE_WEBSOCKET_IPV4;
sock->web_ipv4sock = socket;
}
}
#endif
if(bindaddr.type & NETTYPE_IPV6)
{
struct sockaddr_in6 addr;
/* bind, we should check for error */
tmpbindaddr.type = NETTYPE_IPV6;
netaddr_to_sockaddr_in6(&tmpbindaddr, &addr);
socket = priv_net_create_socket(AF_INET6, SOCK_DGRAM, (struct sockaddr *)&addr, sizeof(addr));
if(socket >= 0)
{
sock->type |= NETTYPE_IPV6;
sock->ipv6sock = socket;
/* set broadcast */
if(setsockopt(socket, SOL_SOCKET, SO_BROADCAST, (const char *)&broadcast, sizeof(broadcast)) != 0)
dbg_msg("socket", "Setting BROADCAST on ipv6 failed: %d", errno);
{
/* set DSCP/TOS */
int iptos = 0x10 /* IPTOS_LOWDELAY */;
//int iptos = 46; /* High Priority */
if(setsockopt(socket, IPPROTO_IP, IP_TOS, (char *)&iptos, sizeof(iptos)) != 0)
dbg_msg("socket", "Setting TOS on ipv6 failed: %d", errno);
}
}
}
if(socket < 0)
{
free(sock);
sock = nullptr;
}
else
{
/* set non-blocking */
net_set_non_blocking(sock);
net_buffer_init(&sock->buffer);
}
/* return */
return sock;
}
int net_udp_send(NETSOCKET sock, const NETADDR *addr, const void *data, int size)
{
int d = -1;
if(addr->type & NETTYPE_IPV4)
{
if(sock->ipv4sock >= 0)
{
struct sockaddr_in sa;
if(addr->type & NETTYPE_LINK_BROADCAST)
{
mem_zero(&sa, sizeof(sa));
sa.sin_port = htons(addr->port);
sa.sin_family = AF_INET;
sa.sin_addr.s_addr = INADDR_BROADCAST;
}
else
netaddr_to_sockaddr_in(addr, &sa);
d = sendto((int)sock->ipv4sock, (const char *)data, size, 0, (struct sockaddr *)&sa, sizeof(sa));
}
else
dbg_msg("net", "can't send ipv4 traffic to this socket");
}
#if defined(CONF_WEBSOCKETS)
if(addr->type & NETTYPE_WEBSOCKET_IPV4)
{
if(sock->web_ipv4sock >= 0)
{
char addr_str[NETADDR_MAXSTRSIZE];
str_format(addr_str, sizeof(addr_str), "%d.%d.%d.%d", addr->ip[0], addr->ip[1], addr->ip[2], addr->ip[3]);
d = websocket_send(sock->web_ipv4sock, (const unsigned char *)data, size, addr_str, addr->port);
}
else
dbg_msg("net", "can't send websocket_ipv4 traffic to this socket");
}
#endif
if(addr->type & NETTYPE_IPV6)
{
if(sock->ipv6sock >= 0)
{
struct sockaddr_in6 sa;
if(addr->type & NETTYPE_LINK_BROADCAST)
{
mem_zero(&sa, sizeof(sa));
sa.sin6_port = htons(addr->port);
sa.sin6_family = AF_INET6;
sa.sin6_addr.s6_addr[0] = 0xff; /* multicast */
sa.sin6_addr.s6_addr[1] = 0x02; /* link local scope */
sa.sin6_addr.s6_addr[15] = 1; /* all nodes */
}
else
netaddr_to_sockaddr_in6(addr, &sa);
d = sendto((int)sock->ipv6sock, (const char *)data, size, 0, (struct sockaddr *)&sa, sizeof(sa));
}
else
dbg_msg("net", "can't send ipv6 traffic to this socket");
}
/*
else
dbg_msg("net", "can't send to network of type %d", addr->type);
*/
/*if(d < 0)
{
char addrstr[256];
net_addr_str(addr, addrstr, sizeof(addrstr));
dbg_msg("net", "sendto error (%d '%s')", errno, strerror(errno));
dbg_msg("net", "\tsock = %d %x", sock, sock);
dbg_msg("net", "\tsize = %d %x", size, size);
dbg_msg("net", "\taddr = %s", addrstr);
}*/
network_stats.sent_bytes += size;
network_stats.sent_packets++;
return d;
}
void net_buffer_init(NETSOCKET_BUFFER *buffer)
{
#if defined(CONF_PLATFORM_LINUX)
int i;
buffer->pos = 0;
buffer->size = 0;
mem_zero(buffer->msgs, sizeof(buffer->msgs));
mem_zero(buffer->iovecs, sizeof(buffer->iovecs));
mem_zero(buffer->sockaddrs, sizeof(buffer->sockaddrs));
for(i = 0; i < VLEN; ++i)
{
buffer->iovecs[i].iov_base = buffer->bufs[i];
buffer->iovecs[i].iov_len = PACKETSIZE;
buffer->msgs[i].msg_hdr.msg_iov = &(buffer->iovecs[i]);
buffer->msgs[i].msg_hdr.msg_iovlen = 1;
buffer->msgs[i].msg_hdr.msg_name = &(buffer->sockaddrs[i]);
buffer->msgs[i].msg_hdr.msg_namelen = sizeof(buffer->sockaddrs[i]);
}
#endif
}
void net_buffer_reinit(NETSOCKET_BUFFER *buffer)
{
#if defined(CONF_PLATFORM_LINUX)
for(int i = 0; i < VLEN; i++)
{
buffer->msgs[i].msg_hdr.msg_namelen = sizeof(buffer->sockaddrs[i]);
}
#endif
}
void net_buffer_simple(NETSOCKET_BUFFER *buffer, char **buf, int *size)
{
#if defined(CONF_PLATFORM_LINUX)
*buf = buffer->bufs[0];
*size = sizeof(buffer->bufs[0]);
#else
*buf = buffer->buf;
*size = sizeof(buffer->buf);
#endif
}
int net_udp_recv(NETSOCKET sock, NETADDR *addr, unsigned char **data)
{
char sockaddrbuf[128];
int bytes = 0;
#if defined(CONF_PLATFORM_LINUX)
if(sock->ipv4sock >= 0)
{
if(sock->buffer.pos >= sock->buffer.size)
{
net_buffer_reinit(&sock->buffer);
sock->buffer.size = recvmmsg(sock->ipv4sock, sock->buffer.msgs, VLEN, 0, NULL);
sock->buffer.pos = 0;
}
}
if(sock->ipv6sock >= 0)
{
if(sock->buffer.pos >= sock->buffer.size)
{
net_buffer_reinit(&sock->buffer);
sock->buffer.size = recvmmsg(sock->ipv6sock, sock->buffer.msgs, VLEN, 0, NULL);
sock->buffer.pos = 0;
}
}
if(sock->buffer.pos < sock->buffer.size)
{
sockaddr_to_netaddr((struct sockaddr *)&(sock->buffer.sockaddrs[sock->buffer.pos]), addr);
bytes = sock->buffer.msgs[sock->buffer.pos].msg_len;
*data = (unsigned char *)sock->buffer.bufs[sock->buffer.pos];
sock->buffer.pos++;
network_stats.recv_bytes += bytes;
network_stats.recv_packets++;
return bytes;
}
#else
if(bytes == 0 && sock->ipv4sock >= 0)
{
socklen_t fromlen = sizeof(struct sockaddr_in);
bytes = recvfrom(sock->ipv4sock, sock->buffer.buf, sizeof(sock->buffer.buf), 0, (struct sockaddr *)&sockaddrbuf, &fromlen);
*data = (unsigned char *)sock->buffer.buf;
}
if(bytes <= 0 && sock->ipv6sock >= 0)
{
socklen_t fromlen = sizeof(struct sockaddr_in6);
bytes = recvfrom(sock->ipv6sock, sock->buffer.buf, sizeof(sock->buffer.buf), 0, (struct sockaddr *)&sockaddrbuf, &fromlen);
*data = (unsigned char *)sock->buffer.buf;
}
#endif
#if defined(CONF_WEBSOCKETS)
if(bytes <= 0 && sock->web_ipv4sock >= 0)
{
char *buf;
int size;
net_buffer_simple(&sock->buffer, &buf, &size);
socklen_t fromlen = sizeof(struct sockaddr);
struct sockaddr_in *sockaddrbuf_in = (struct sockaddr_in *)&sockaddrbuf;
bytes = websocket_recv(sock->web_ipv4sock, (unsigned char *)buf, size, sockaddrbuf_in, fromlen);
*data = (unsigned char *)buf;
sockaddrbuf_in->sin_family = AF_WEBSOCKET_INET;
}
#endif
if(bytes > 0)
{
sockaddr_to_netaddr((struct sockaddr *)&sockaddrbuf, addr);
network_stats.recv_bytes += bytes;
network_stats.recv_packets++;
return bytes;
}
else if(bytes == 0)
return 0;
return -1; /* error */
}
int net_udp_close(NETSOCKET sock)
{
return priv_net_close_all_sockets(sock);
}
NETSOCKET net_tcp_create(NETADDR bindaddr)
{
NETSOCKET sock = (NETSOCKET_INTERNAL *)malloc(sizeof(*sock));
*sock = invalid_socket;
NETADDR tmpbindaddr = bindaddr;
int socket = -1;
if(bindaddr.type & NETTYPE_IPV4)
{
struct sockaddr_in addr;
/* bind, we should check for error */
tmpbindaddr.type = NETTYPE_IPV4;
netaddr_to_sockaddr_in(&tmpbindaddr, &addr);
socket = priv_net_create_socket(AF_INET, SOCK_STREAM, (struct sockaddr *)&addr, sizeof(addr));
if(socket >= 0)
{
sock->type |= NETTYPE_IPV4;
sock->ipv4sock = socket;
}
}
if(bindaddr.type & NETTYPE_IPV6)
{
struct sockaddr_in6 addr;
/* bind, we should check for error */
tmpbindaddr.type = NETTYPE_IPV6;
netaddr_to_sockaddr_in6(&tmpbindaddr, &addr);
socket = priv_net_create_socket(AF_INET6, SOCK_STREAM, (struct sockaddr *)&addr, sizeof(addr));
if(socket >= 0)
{
sock->type |= NETTYPE_IPV6;
sock->ipv6sock = socket;
}
}
if(socket < 0)
{
free(sock);
sock = nullptr;
}
/* return */
return sock;
}
int net_set_non_blocking(NETSOCKET sock)
{
unsigned long mode = 1;
if(sock->ipv4sock >= 0)
{
#if defined(CONF_FAMILY_WINDOWS)
ioctlsocket(sock->ipv4sock, FIONBIO, (unsigned long *)&mode);
#else
if(ioctl(sock->ipv4sock, FIONBIO, (unsigned long *)&mode) == -1)
dbg_msg("socket", "setting ipv4 non-blocking failed: %d", errno);
#endif
}
if(sock->ipv6sock >= 0)
{
#if defined(CONF_FAMILY_WINDOWS)
ioctlsocket(sock->ipv6sock, FIONBIO, (unsigned long *)&mode);
#else
if(ioctl(sock->ipv6sock, FIONBIO, (unsigned long *)&mode) == -1)
dbg_msg("socket", "setting ipv6 non-blocking failed: %d", errno);
#endif
}
return 0;
}
int net_set_blocking(NETSOCKET sock)
{
unsigned long mode = 0;
if(sock->ipv4sock >= 0)
{
#if defined(CONF_FAMILY_WINDOWS)
ioctlsocket(sock->ipv4sock, FIONBIO, (unsigned long *)&mode);
#else
if(ioctl(sock->ipv4sock, FIONBIO, (unsigned long *)&mode) == -1)
dbg_msg("socket", "setting ipv4 blocking failed: %d", errno);
#endif
}
if(sock->ipv6sock >= 0)
{
#if defined(CONF_FAMILY_WINDOWS)
ioctlsocket(sock->ipv6sock, FIONBIO, (unsigned long *)&mode);
#else
if(ioctl(sock->ipv6sock, FIONBIO, (unsigned long *)&mode) == -1)
dbg_msg("socket", "setting ipv6 blocking failed: %d", errno);
#endif
}
return 0;
}
int net_tcp_listen(NETSOCKET sock, int backlog)
{
int err = -1;
if(sock->ipv4sock >= 0)
err = listen(sock->ipv4sock, backlog);
if(sock->ipv6sock >= 0)
err = listen(sock->ipv6sock, backlog);
return err;
}
int net_tcp_accept(NETSOCKET sock, NETSOCKET *new_sock, NETADDR *a)
{
int s;
socklen_t sockaddr_len;
*new_sock = nullptr;
if(sock->ipv4sock >= 0)
{
struct sockaddr_in addr;
sockaddr_len = sizeof(addr);
s = accept(sock->ipv4sock, (struct sockaddr *)&addr, &sockaddr_len);
if(s != -1)
{
sockaddr_to_netaddr((const struct sockaddr *)&addr, a);
*new_sock = (NETSOCKET_INTERNAL *)malloc(sizeof(**new_sock));
**new_sock = invalid_socket;
(*new_sock)->type = NETTYPE_IPV4;
(*new_sock)->ipv4sock = s;
return s;
}
}
if(sock->ipv6sock >= 0)
{
struct sockaddr_in6 addr;
sockaddr_len = sizeof(addr);
s = accept(sock->ipv6sock, (struct sockaddr *)&addr, &sockaddr_len);
if(s != -1)
{
*new_sock = (NETSOCKET_INTERNAL *)malloc(sizeof(**new_sock));
**new_sock = invalid_socket;
sockaddr_to_netaddr((const struct sockaddr *)&addr, a);
(*new_sock)->type = NETTYPE_IPV6;
(*new_sock)->ipv6sock = s;
return s;
}
}
return -1;
}
int net_tcp_connect(NETSOCKET sock, const NETADDR *a)
{
if(a->type & NETTYPE_IPV4)
{
struct sockaddr_in addr;
netaddr_to_sockaddr_in(a, &addr);
return connect(sock->ipv4sock, (struct sockaddr *)&addr, sizeof(addr));
}
if(a->type & NETTYPE_IPV6)
{
struct sockaddr_in6 addr;
netaddr_to_sockaddr_in6(a, &addr);
return connect(sock->ipv6sock, (struct sockaddr *)&addr, sizeof(addr));
}
return -1;
}
int net_tcp_connect_non_blocking(NETSOCKET sock, NETADDR bindaddr)
{
int res = 0;
net_set_non_blocking(sock);
res = net_tcp_connect(sock, &bindaddr);
net_set_blocking(sock);
return res;
}
int net_tcp_send(NETSOCKET sock, const void *data, int size)
{
int bytes = -1;
if(sock->ipv4sock >= 0)
bytes = send((int)sock->ipv4sock, (const char *)data, size, 0);
if(sock->ipv6sock >= 0)
bytes = send((int)sock->ipv6sock, (const char *)data, size, 0);
return bytes;
}
int net_tcp_recv(NETSOCKET sock, void *data, int maxsize)
{
int bytes = -1;
if(sock->ipv4sock >= 0)
bytes = recv((int)sock->ipv4sock, (char *)data, maxsize, 0);
if(sock->ipv6sock >= 0)
bytes = recv((int)sock->ipv6sock, (char *)data, maxsize, 0);
return bytes;
}
int net_tcp_close(NETSOCKET sock)
{
return priv_net_close_all_sockets(sock);
}
int net_errno()
{
#if defined(CONF_FAMILY_WINDOWS)
return WSAGetLastError();
#else
return errno;
#endif
}
int net_would_block()
{
#if defined(CONF_FAMILY_WINDOWS)
return net_errno() == WSAEWOULDBLOCK;
#else
return net_errno() == EWOULDBLOCK;
#endif
}
int net_init()
{
#if defined(CONF_FAMILY_WINDOWS)
WSADATA wsaData;
int err = WSAStartup(MAKEWORD(1, 1), &wsaData);
dbg_assert(err == 0, "network initialization failed.");
return err == 0 ? 0 : 1;
#endif
return 0;
}
#if defined(CONF_FAMILY_UNIX)
UNIXSOCKET net_unix_create_unnamed()
{
return socket(AF_UNIX, SOCK_DGRAM, 0);
}
int net_unix_send(UNIXSOCKET sock, UNIXSOCKETADDR *addr, void *data, int size)
{
return sendto(sock, data, size, 0, (struct sockaddr *)addr, sizeof(struct sockaddr_un));
}
void net_unix_set_addr(UNIXSOCKETADDR *addr, const char *path)
{
mem_zero(addr, sizeof(*addr));
addr->sun_family = AF_UNIX;
str_copy(addr->sun_path, path);
}
void net_unix_close(UNIXSOCKET sock)
{
close(sock);
}
#endif
#if defined(CONF_FAMILY_WINDOWS)
static inline time_t filetime_to_unixtime(LPFILETIME filetime)
{
time_t t;
ULARGE_INTEGER li;
li.LowPart = filetime->dwLowDateTime;
li.HighPart = filetime->dwHighDateTime;
li.QuadPart /= 10000000; // 100ns to 1s
li.QuadPart -= 11644473600LL; // Windows epoch is in the past
t = li.QuadPart;
return t == (time_t)li.QuadPart ? t : (time_t)-1;
}
#endif
void fs_listdir(const char *dir, FS_LISTDIR_CALLBACK cb, int type, void *user)
{
#if defined(CONF_FAMILY_WINDOWS)
WIN32_FIND_DATAW finddata;
HANDLE handle;
char buffer[IO_MAX_PATH_LENGTH];
char buffer2[IO_MAX_PATH_LENGTH];
WCHAR wBuffer[IO_MAX_PATH_LENGTH];
int length;
str_format(buffer, sizeof(buffer), "%s/*", dir);
MultiByteToWideChar(CP_UTF8, 0, buffer, -1, wBuffer, std::size(wBuffer));
handle = FindFirstFileW(wBuffer, &finddata);
if(handle == INVALID_HANDLE_VALUE)
return;
str_format(buffer, sizeof(buffer), "%s/", dir);
length = str_length(buffer);
/* add all the entries */
do
{
WideCharToMultiByte(CP_UTF8, 0, finddata.cFileName, -1, buffer2, sizeof(buffer2), NULL, NULL);
str_copy(buffer + length, buffer2, (int)sizeof(buffer) - length);
if(cb(buffer2, (finddata.dwFileAttributes & FILE_ATTRIBUTE_DIRECTORY) != 0, type, user))
break;
} while(FindNextFileW(handle, &finddata));
FindClose(handle);
#else
struct dirent *entry;
char buffer[IO_MAX_PATH_LENGTH];
int length;
DIR *d = opendir(dir);
if(!d)
return;
str_format(buffer, sizeof(buffer), "%s/", dir);
length = str_length(buffer);
while((entry = readdir(d)) != NULL)
{
str_copy(buffer + length, entry->d_name, (int)sizeof(buffer) - length);
if(cb(entry->d_name, fs_is_dir(buffer), type, user))
break;
}
/* close the directory and return */
closedir(d);
#endif
}
void fs_listdir_fileinfo(const char *dir, FS_LISTDIR_CALLBACK_FILEINFO cb, int type, void *user)
{
#if defined(CONF_FAMILY_WINDOWS)
WIN32_FIND_DATAW finddata;
HANDLE handle;
char buffer[IO_MAX_PATH_LENGTH];
char buffer2[IO_MAX_PATH_LENGTH];
WCHAR wBuffer[IO_MAX_PATH_LENGTH];
int length;
str_format(buffer, sizeof(buffer), "%s/*", dir);
MultiByteToWideChar(CP_UTF8, 0, buffer, -1, wBuffer, std::size(wBuffer));
handle = FindFirstFileW(wBuffer, &finddata);
if(handle == INVALID_HANDLE_VALUE)
return;
str_format(buffer, sizeof(buffer), "%s/", dir);
length = str_length(buffer);
/* add all the entries */
do
{
WideCharToMultiByte(CP_UTF8, 0, finddata.cFileName, -1, buffer2, sizeof(buffer2), NULL, NULL);
str_copy(buffer + length, buffer2, (int)sizeof(buffer) - length);
CFsFileInfo info;
info.m_pName = buffer2;
info.m_TimeCreated = filetime_to_unixtime(&finddata.ftCreationTime);
info.m_TimeModified = filetime_to_unixtime(&finddata.ftLastWriteTime);
if(cb(&info, (finddata.dwFileAttributes & FILE_ATTRIBUTE_DIRECTORY) != 0, type, user))
break;
} while(FindNextFileW(handle, &finddata));
FindClose(handle);
#else
struct dirent *entry;
time_t created = -1, modified = -1;
char buffer[IO_MAX_PATH_LENGTH];
int length;
DIR *d = opendir(dir);
if(!d)
return;
str_format(buffer, sizeof(buffer), "%s/", dir);
length = str_length(buffer);
while((entry = readdir(d)) != NULL)
{
CFsFileInfo info;
str_copy(buffer + length, entry->d_name, (int)sizeof(buffer) - length);
fs_file_time(buffer, &created, &modified);
info.m_pName = entry->d_name;
info.m_TimeCreated = created;
info.m_TimeModified = modified;
if(cb(&info, fs_is_dir(buffer), type, user))
break;
}
/* close the directory and return */
closedir(d);
#endif
}
int fs_storage_path(const char *appname, char *path, int max)
{
#if defined(CONF_FAMILY_WINDOWS)
WCHAR *home = _wgetenv(L"APPDATA");
if(!home)
return -1;
char buffer[IO_MAX_PATH_LENGTH];
WideCharToMultiByte(CP_UTF8, 0, home, -1, buffer, sizeof(buffer), NULL, NULL);
str_format(path, max, "%s/%s", buffer, appname);
return 0;
#elif defined(CONF_PLATFORM_ANDROID)
// just use the data directory
return -1;
#else
char *home = getenv("HOME");
if(!home)
return -1;
#if defined(CONF_PLATFORM_HAIKU)
str_format(path, max, "%s/config/settings/%s", home, appname);
#elif defined(CONF_PLATFORM_MACOS)
str_format(path, max, "%s/Library/Application Support/%s", home, appname);
#else
if(str_comp(appname, "Teeworlds") == 0)
{
// fallback for old directory for Teeworlds compatibility
str_format(path, max, "%s/.%s", home, appname);
}
else
{
char *data_home = getenv("XDG_DATA_HOME");
if(data_home)
str_format(path, max, "%s/%s", data_home, appname);
else
str_format(path, max, "%s/.local/share/%s", home, appname);
}
for(int i = str_length(path) - str_length(appname); path[i]; i++)
path[i] = tolower((unsigned char)path[i]);
#endif
return 0;
#endif
}
int fs_makedir_rec_for(const char *path)
{
char buffer[1024 * 2];
char *p;
str_copy(buffer, path);
for(p = buffer + 1; *p != '\0'; p++)
{
if(*p == '/' && *(p + 1) != '\0')
{
*p = '\0';
if(fs_makedir(buffer) < 0)
return -1;
*p = '/';
}
}
return 0;
}
int fs_makedir(const char *path)
{
#if defined(CONF_FAMILY_WINDOWS)
WCHAR wBuffer[IO_MAX_PATH_LENGTH];
MultiByteToWideChar(CP_UTF8, 0, path, -1, wBuffer, std::size(wBuffer));
if(CreateDirectoryW(wBuffer, NULL) != 0)
return 0;
if(GetLastError() == ERROR_ALREADY_EXISTS)
return 0;
return -1;
#else
#ifdef CONF_PLATFORM_HAIKU
struct stat st;
if(stat(path, &st) == 0)
return 0;
#endif
if(mkdir(path, 0755) == 0)
return 0;
if(errno == EEXIST)
return 0;
return -1;
#endif
}
int fs_removedir(const char *path)
{
#if defined(CONF_FAMILY_WINDOWS)
WCHAR wPath[IO_MAX_PATH_LENGTH];
MultiByteToWideChar(CP_UTF8, 0, path, -1, wPath, std::size(wPath));
if(RemoveDirectoryW(wPath) != 0)
return 0;
return -1;
#else
if(rmdir(path) == 0)
return 0;
return -1;
#endif
}
int fs_is_dir(const char *path)
{
#if defined(CONF_FAMILY_WINDOWS)
WCHAR wPath[IO_MAX_PATH_LENGTH];
MultiByteToWideChar(CP_UTF8, 0, path, -1, wPath, std::size(wPath));
DWORD attributes = GetFileAttributesW(wPath);
return attributes != INVALID_FILE_ATTRIBUTES && (attributes & FILE_ATTRIBUTE_DIRECTORY) ? 1 : 0;
#else
struct stat sb;
if(stat(path, &sb) == -1)
return 0;
return S_ISDIR(sb.st_mode) ? 1 : 0;
#endif
}
int fs_is_relative_path(const char *path)
{
#if defined(CONF_FAMILY_WINDOWS)
WCHAR wPath[IO_MAX_PATH_LENGTH];
MultiByteToWideChar(CP_UTF8, 0, path, -1, wPath, std::size(wPath));
return PathIsRelativeW(wPath) ? 1 : 0;
#else
return path[0] == '/' ? 0 : 1; // yes, it's that simple
#endif
}
int fs_chdir(const char *path)
{
if(fs_is_dir(path))
{
#if defined(CONF_FAMILY_WINDOWS)
WCHAR wBuffer[IO_MAX_PATH_LENGTH];
MultiByteToWideChar(CP_UTF8, 0, path, -1, wBuffer, std::size(wBuffer));
return SetCurrentDirectoryW(wBuffer) != 0 ? 0 : 1;
#else
if(chdir(path))
return 1;
else
return 0;
#endif
}
else
return 1;
}
char *fs_getcwd(char *buffer, int buffer_size)
{
#if defined(CONF_FAMILY_WINDOWS)
WCHAR wBuffer[IO_MAX_PATH_LENGTH];
DWORD result = GetCurrentDirectoryW(std::size(wBuffer), wBuffer);
if(result == 0 || result > std::size(wBuffer))
return 0;
WideCharToMultiByte(CP_UTF8, 0, wBuffer, -1, buffer, buffer_size, NULL, NULL);
return buffer;
#else
return getcwd(buffer, buffer_size);
#endif
}
int fs_parent_dir(char *path)
{
char *parent = 0;
for(; *path; ++path)
{
if(*path == '/' || *path == '\\')
parent = path;
}
if(parent)
{
*parent = 0;
return 0;
}
return 1;
}
int fs_remove(const char *filename)
{
#if defined(CONF_FAMILY_WINDOWS)
WCHAR wFilename[IO_MAX_PATH_LENGTH];
MultiByteToWideChar(CP_UTF8, 0, filename, -1, wFilename, std::size(wFilename));
return DeleteFileW(wFilename) == 0;
#else
return unlink(filename) != 0;
#endif
}
int fs_rename(const char *oldname, const char *newname)
{
#if defined(CONF_FAMILY_WINDOWS)
WCHAR wOldname[IO_MAX_PATH_LENGTH];
WCHAR wNewname[IO_MAX_PATH_LENGTH];
MultiByteToWideChar(CP_UTF8, 0, oldname, -1, wOldname, std::size(wOldname));
MultiByteToWideChar(CP_UTF8, 0, newname, -1, wNewname, std::size(wNewname));
if(MoveFileExW(wOldname, wNewname, MOVEFILE_REPLACE_EXISTING | MOVEFILE_COPY_ALLOWED) == 0)
return 1;
#else
if(rename(oldname, newname) != 0)
return 1;
#endif
return 0;
}
int fs_file_time(const char *name, time_t *created, time_t *modified)
{
#if defined(CONF_FAMILY_WINDOWS)
WIN32_FIND_DATAW finddata;
HANDLE handle;
WCHAR wBuffer[IO_MAX_PATH_LENGTH];
MultiByteToWideChar(CP_UTF8, 0, name, -1, wBuffer, std::size(wBuffer));
handle = FindFirstFileW(wBuffer, &finddata);
if(handle == INVALID_HANDLE_VALUE)
return 1;
*created = filetime_to_unixtime(&finddata.ftCreationTime);
*modified = filetime_to_unixtime(&finddata.ftLastWriteTime);
FindClose(handle);
#elif defined(CONF_FAMILY_UNIX)
struct stat sb;
if(stat(name, &sb))
return 1;
*created = sb.st_ctime;
*modified = sb.st_mtime;
#else
#error not implemented
#endif
return 0;
}
void swap_endian(void *data, unsigned elem_size, unsigned num)
{
char *src = (char *)data;
char *dst = src + (elem_size - 1);
while(num)
{
unsigned n = elem_size >> 1;
char tmp;
while(n)
{
tmp = *src;
*src = *dst;
*dst = tmp;
src++;
dst--;
n--;
}
src = src + (elem_size >> 1);
dst = src + (elem_size - 1);
num--;
}
}
int net_socket_read_wait(NETSOCKET sock, int time)
{
struct timeval tv;
fd_set readfds;
int sockid;
tv.tv_sec = time / 1000000;
tv.tv_usec = time % 1000000;
sockid = 0;
FD_ZERO(&readfds); // NOLINT(clang-analyzer-security.insecureAPI.bzero)
if(sock->ipv4sock >= 0)
{
FD_SET(sock->ipv4sock, &readfds);
sockid = sock->ipv4sock;
}
if(sock->ipv6sock >= 0)
{
FD_SET(sock->ipv6sock, &readfds);
if(sock->ipv6sock > sockid)
sockid = sock->ipv6sock;
}
#if defined(CONF_WEBSOCKETS)
if(sock->web_ipv4sock >= 0)
{
int maxfd = websocket_fd_set(sock->web_ipv4sock, &readfds);
if(maxfd > sockid)
{
sockid = maxfd;
FD_SET(sockid, &readfds);
}
}
#endif
/* don't care about writefds and exceptfds */
if(time < 0)
select(sockid + 1, &readfds, NULL, NULL, NULL);
else
select(sockid + 1, &readfds, NULL, NULL, &tv);
if(sock->ipv4sock >= 0 && FD_ISSET(sock->ipv4sock, &readfds))
return 1;
#if defined(CONF_WEBSOCKETS)
if(sock->web_ipv4sock >= 0 && FD_ISSET(sockid, &readfds))
return 1;
#endif
if(sock->ipv6sock >= 0 && FD_ISSET(sock->ipv6sock, &readfds))
return 1;
return 0;
}
int time_timestamp()
{
return time(0);
}
int time_houroftheday()
{
time_t time_data;
struct tm *time_info;
time(&time_data);
time_info = localtime(&time_data);
return time_info->tm_hour;
}
int time_season()
{
time_t time_data;
struct tm *time_info;
time(&time_data);
time_info = localtime(&time_data);
if((time_info->tm_mon == 11 && time_info->tm_mday == 31) || (time_info->tm_mon == 0 && time_info->tm_mday == 1))
{
return SEASON_NEWYEAR;
}
switch(time_info->tm_mon)
{
case 11:
case 0:
case 1:
return SEASON_WINTER;
case 2:
case 3:
case 4:
return SEASON_SPRING;
case 5:
case 6:
case 7:
return SEASON_SUMMER;
case 8:
case 9:
case 10:
return SEASON_AUTUMN;
}
return SEASON_SPRING; // should never happen
}
void str_append(char *dst, const char *src, int dst_size)
{
int s = str_length(dst);
int i = 0;
while(s < dst_size)
{
dst[s] = src[i];
if(!src[i]) /* check for null termination */
break;
s++;
i++;
}
dst[dst_size - 1] = 0; /* assure null termination */
str_utf8_fix_truncation(dst);
}
void str_copy(char *dst, const char *src, int dst_size)
{
dst[0] = '\0';
strncat(dst, src, dst_size - 1);
str_utf8_fix_truncation(dst);
}
void str_utf8_truncate(char *dst, int dst_size, const char *src, int truncation_len)
{
int size = -1;
const char *cursor = src;
int pos = 0;
while(pos <= truncation_len && cursor - src < dst_size && size != cursor - src)
{
size = cursor - src;
if(str_utf8_decode(&cursor) == 0)
{
break;
}
pos++;
}
str_copy(dst, src, size + 1);
}
void str_truncate(char *dst, int dst_size, const char *src, int truncation_len)
{
int size = dst_size;
if(truncation_len < size)
{
size = truncation_len + 1;
}
str_copy(dst, src, size);
}
int str_length(const char *str)
{
return (int)strlen(str);
}
int str_format(char *buffer, int buffer_size, const char *format, ...)
{
#if defined(CONF_FAMILY_WINDOWS)
va_list ap;
va_start(ap, format);
_vsnprintf(buffer, buffer_size, format, ap);
va_end(ap);
buffer[buffer_size - 1] = 0; /* assure null termination */
#else
va_list ap;
va_start(ap, format);
vsnprintf(buffer, buffer_size, format, ap);
va_end(ap);
/* null termination is assured by definition of vsnprintf */
#endif
return str_utf8_fix_truncation(buffer);
}
const char *str_trim_words(const char *str, int words)
{
while(*str && str_isspace(*str))
str++;
while(words && *str)
{
if(str_isspace(*str) && !str_isspace(*(str + 1)))
words--;
str++;
}
return str;
}
bool str_has_cc(const char *str)
{
unsigned char *s = (unsigned char *)str;
while(*s)
{
if(*s < 32)
{
return true;
}
s++;
}
return false;
}
/* makes sure that the string only contains the characters between 32 and 255 */
void str_sanitize_cc(char *str_in)
{
unsigned char *str = (unsigned char *)str_in;
while(*str)
{
if(*str < 32)
*str = ' ';
str++;
}
}
/* makes sure that the string only contains the characters between 32 and 255 + \r\n\t */
void str_sanitize(char *str_in)
{
unsigned char *str = (unsigned char *)str_in;
while(*str)
{
if(*str < 32 && !(*str == '\r') && !(*str == '\n') && !(*str == '\t'))
*str = ' ';
str++;
}
}
void str_sanitize_filename(char *str_in)
{
unsigned char *str = (unsigned char *)str_in;
while(*str)
{
if(*str < 32 || *str == '\\' || *str == '/' || *str == '|' || *str == ':' || *str == '*' || *str == '?' || *str == '<' || *str == '>' || *str == '"')
*str = ' ';
str++;
}
}
/* removes leading and trailing spaces and limits the use of multiple spaces */
void str_clean_whitespaces(char *str_in)
{
char *read = str_in;
char *write = str_in;
/* skip initial whitespace */
while(*read == ' ')
read++;
/* end of read string is detected in the loop */
while(true)
{
/* skip whitespace */
int found_whitespace = 0;
for(; *read == ' '; read++)
found_whitespace = 1;
/* if not at the end of the string, put a found whitespace here */
if(*read)
{
if(found_whitespace)
*write++ = ' ';
*write++ = *read++;
}
else
{
*write = 0;
break;
}
}
}
char *str_skip_to_whitespace(char *str)
{
while(*str && !str_isspace(*str))
str++;
return str;
}
const char *str_skip_to_whitespace_const(const char *str)
{
while(*str && !str_isspace(*str))
str++;
return str;
}
char *str_skip_whitespaces(char *str)
{
while(*str && str_isspace(*str))
str++;
return str;
}
const char *str_skip_whitespaces_const(const char *str)
{
while(*str && str_isspace(*str))
str++;
return str;
}
/* case */
int str_comp_nocase(const char *a, const char *b)
{
#if defined(CONF_FAMILY_WINDOWS)
return _stricmp(a, b);
#else
return strcasecmp(a, b);
#endif
}
int str_comp_nocase_num(const char *a, const char *b, int num)
{
#if defined(CONF_FAMILY_WINDOWS)
return _strnicmp(a, b, num);
#else
return strncasecmp(a, b, num);
#endif
}
int str_comp(const char *a, const char *b)
{
return strcmp(a, b);
}
int str_comp_num(const char *a, const char *b, int num)
{
return strncmp(a, b, num);
}
int str_comp_filenames(const char *a, const char *b)
{
int result;
for(; *a && *b; ++a, ++b)
{
if(*a >= '0' && *a <= '9' && *b >= '0' && *b <= '9')
{
result = 0;
do
{
if(!result)
result = *a - *b;
++a;
++b;
} while(*a >= '0' && *a <= '9' && *b >= '0' && *b <= '9');
if(*a >= '0' && *a <= '9')
return 1;
else if(*b >= '0' && *b <= '9')
return -1;
else if(result)
return result;
}
result = tolower(*a) - tolower(*b);
if(result)
return result;
}
return *a - *b;
}
const char *str_startswith_nocase(const char *str, const char *prefix)
{
int prefixl = str_length(prefix);
if(str_comp_nocase_num(str, prefix, prefixl) == 0)
{
return str + prefixl;
}
else
{
return 0;
}
}
const char *str_startswith(const char *str, const char *prefix)
{
int prefixl = str_length(prefix);
if(str_comp_num(str, prefix, prefixl) == 0)
{
return str + prefixl;
}
else
{
return 0;
}
}
const char *str_endswith_nocase(const char *str, const char *suffix)
{
int strl = str_length(str);
int suffixl = str_length(suffix);
const char *strsuffix;
if(strl < suffixl)
{
return 0;
}
strsuffix = str + strl - suffixl;
if(str_comp_nocase(strsuffix, suffix) == 0)
{
return strsuffix;
}
else
{
return 0;
}
}
const char *str_endswith(const char *str, const char *suffix)
{
int strl = str_length(str);
int suffixl = str_length(suffix);
const char *strsuffix;
if(strl < suffixl)
{
return 0;
}
strsuffix = str + strl - suffixl;
if(str_comp(strsuffix, suffix) == 0)
{
return strsuffix;
}
else
{
return 0;
}
}
static int min3(int a, int b, int c)
{
int min = a;
if(b < min)
min = b;
if(c < min)
min = c;
return min;
}
int str_utf8_dist(const char *a, const char *b)
{
int buf_len = 2 * (str_length(a) + 1 + str_length(b) + 1);
int *buf = (int *)calloc(buf_len, sizeof(*buf));
int result = str_utf8_dist_buffer(a, b, buf, buf_len);
free(buf);
return result;
}
static int str_to_utf32_unchecked(const char *str, int **out)
{
int out_len = 0;
while((**out = str_utf8_decode(&str)))
{
(*out)++;
out_len++;
}
return out_len;
}
int str_utf32_dist_buffer(const int *a, int a_len, const int *b, int b_len, int *buf, int buf_len)
{
int i, j;
dbg_assert(buf_len >= (a_len + 1) + (b_len + 1), "buffer too small");
if(a_len > b_len)
{
int tmp1 = a_len;
const int *tmp2 = a;
a_len = b_len;
a = b;
b_len = tmp1;
b = tmp2;
}
#define B(i, j) buf[((j)&1) * (a_len + 1) + (i)]
for(i = 0; i <= a_len; i++)
{
B(i, 0) = i;
}
for(j = 1; j <= b_len; j++)
{
B(0, j) = j;
for(i = 1; i <= a_len; i++)
{
int subst = (a[i - 1] != b[j - 1]);
B(i, j) = min3(
B(i - 1, j) + 1,
B(i, j - 1) + 1,
B(i - 1, j - 1) + subst);
}
}
return B(a_len, b_len);
#undef B
}
int str_utf8_dist_buffer(const char *a_utf8, const char *b_utf8, int *buf, int buf_len)
{
int a_utf8_len = str_length(a_utf8);
int b_utf8_len = str_length(b_utf8);
int *a, *b; // UTF-32
int a_len, b_len; // UTF-32 length
dbg_assert(buf_len >= 2 * (a_utf8_len + 1 + b_utf8_len + 1), "buffer too small");
if(a_utf8_len > b_utf8_len)
{
const char *tmp2 = a_utf8;
a_utf8 = b_utf8;
b_utf8 = tmp2;
}
a = buf;
a_len = str_to_utf32_unchecked(a_utf8, &buf);
b = buf;
b_len = str_to_utf32_unchecked(b_utf8, &buf);
return str_utf32_dist_buffer(a, a_len, b, b_len, buf, buf_len - b_len - a_len);
}
const char *str_find_nocase(const char *haystack, const char *needle)
{
while(*haystack) /* native implementation */
{
const char *a = haystack;
const char *b = needle;
while(*a && *b && tolower((unsigned char)*a) == tolower((unsigned char)*b))
{
a++;
b++;
}
if(!(*b))
return haystack;
haystack++;
}
return 0;
}
const char *str_find(const char *haystack, const char *needle)
{
while(*haystack) /* native implementation */
{
const char *a = haystack;
const char *b = needle;
while(*a && *b && *a == *b)
{
a++;
b++;
}
if(!(*b))
return haystack;
haystack++;
}
return 0;
}
const char *str_rchr(const char *haystack, char needle)
{
return strrchr(haystack, needle);
}
int str_countchr(const char *haystack, char needle)
{
int count = 0;
while(*haystack)
{
if(*haystack == needle)
count++;
haystack++;
}
return count;
}
void str_hex(char *dst, int dst_size, const void *data, int data_size)
{
static const char hex[] = "0123456789ABCDEF";
int data_index;
int dst_index;
for(data_index = 0, dst_index = 0; data_index < data_size && dst_index < dst_size - 3; data_index++)
{
dst[data_index * 3] = hex[((const unsigned char *)data)[data_index] >> 4];
dst[data_index * 3 + 1] = hex[((const unsigned char *)data)[data_index] & 0xf];
dst[data_index * 3 + 2] = ' ';
dst_index += 3;
}
dst[dst_index] = '\0';
}
static int hexval(char x)
{
switch(x)
{
case '0': return 0;
case '1': return 1;
case '2': return 2;
case '3': return 3;
case '4': return 4;
case '5': return 5;
case '6': return 6;
case '7': return 7;
case '8': return 8;
case '9': return 9;
case 'a':
case 'A': return 10;
case 'b':
case 'B': return 11;
case 'c':
case 'C': return 12;
case 'd':
case 'D': return 13;
case 'e':
case 'E': return 14;
case 'f':
case 'F': return 15;
default: return -1;
}
}
static int byteval(const char *hex, unsigned char *dst)
{
int v1 = hexval(hex[0]);
int v2 = hexval(hex[1]);
if(v1 < 0 || v2 < 0)
return 1;
*dst = v1 * 16 + v2;
return 0;
}
int str_hex_decode(void *dst, int dst_size, const char *src)
{
unsigned char *cdst = (unsigned char *)dst;
int slen = str_length(src);
int len = slen / 2;
int i;
if(slen != dst_size * 2)
return 2;
for(i = 0; i < len && dst_size; i++, dst_size--)
{
if(byteval(src + i * 2, cdst++))
return 1;
}
return 0;
}
void str_base64(char *dst, int dst_size, const void *data_raw, int data_size)
{
static const char DIGITS[] = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/";
const unsigned char *data = (const unsigned char *)data_raw;
unsigned value = 0;
int num_bits = 0;
int i = 0;
int o = 0;
dst_size -= 1;
dst[dst_size] = 0;
while(true)
{
if(num_bits < 6 && i < data_size)
{
value = (value << 8) | data[i];
num_bits += 8;
i += 1;
}
if(o == dst_size)
{
return;
}
if(num_bits > 0)
{
unsigned padded;
if(num_bits >= 6)
{
padded = (value >> (num_bits - 6)) & 0x3f;
}
else
{
padded = (value << (6 - num_bits)) & 0x3f;
}
dst[o] = DIGITS[padded];
num_bits -= 6;
o += 1;
}
else if(o % 4 != 0)
{
dst[o] = '=';
o += 1;
}
else
{
dst[o] = 0;
return;
}
}
}
static int base64_digit_value(char digit)
{
if('A' <= digit && digit <= 'Z')
{
return digit - 'A';
}
else if('a' <= digit && digit <= 'z')
{
return digit - 'a' + 26;
}
else if('0' <= digit && digit <= '9')
{
return digit - '0' + 52;
}
else if(digit == '+')
{
return 62;
}
else if(digit == '/')
{
return 63;
}
return -1;
}
int str_base64_decode(void *dst_raw, int dst_size, const char *data)
{
unsigned char *dst = (unsigned char *)dst_raw;
int data_len = str_length(data);
int i;
int o = 0;
if(data_len % 4 != 0)
{
return -3;
}
if(data_len / 4 * 3 > dst_size)
{
// Output buffer too small.
return -2;
}
for(i = 0; i < data_len; i += 4)
{
int num_output_bytes = 3;
char copy[4];
int d[4];
int value;
int b;
mem_copy(copy, data + i, sizeof(copy));
if(i == data_len - 4)
{
if(copy[3] == '=')
{
copy[3] = 'A';
num_output_bytes = 2;
if(copy[2] == '=')
{
copy[2] = 'A';
num_output_bytes = 1;
}
}
}
d[0] = base64_digit_value(copy[0]);
d[1] = base64_digit_value(copy[1]);
d[2] = base64_digit_value(copy[2]);
d[3] = base64_digit_value(copy[3]);
if(d[0] == -1 || d[1] == -1 || d[2] == -1 || d[3] == -1)
{
// Invalid digit.
return -1;
}
value = (d[0] << 18) | (d[1] << 12) | (d[2] << 6) | d[3];
for(b = 0; b < 3; b++)
{
unsigned char byte_value = (value >> (16 - 8 * b)) & 0xff;
if(b < num_output_bytes)
{
dst[o] = byte_value;
o += 1;
}
else
{
if(byte_value != 0)
{
// Padding not zeroed.
return -2;
}
}
}
}
return o;
}
#ifdef __GNUC__
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wformat-nonliteral"
#endif
void str_timestamp_ex(time_t time_data, char *buffer, int buffer_size, const char *format)
{
struct tm *time_info;
time_info = localtime(&time_data);
strftime(buffer, buffer_size, format, time_info);
buffer[buffer_size - 1] = 0; /* assure null termination */
}
void str_timestamp_format(char *buffer, int buffer_size, const char *format)
{
time_t time_data;
time(&time_data);
str_timestamp_ex(time_data, buffer, buffer_size, format);
}
void str_timestamp(char *buffer, int buffer_size)
{
str_timestamp_format(buffer, buffer_size, FORMAT_NOSPACE);
}
#ifdef __GNUC__
#pragma GCC diagnostic pop
#endif
int str_time(int64_t centisecs, int format, char *buffer, int buffer_size)
{
const int sec = 100;
const int min = 60 * sec;
const int hour = 60 * min;
const int day = 24 * hour;
if(buffer_size <= 0)
return -1;
if(centisecs < 0)
centisecs = 0;
buffer[0] = 0;
switch(format)
{
case TIME_DAYS:
if(centisecs >= day)
return str_format(buffer, buffer_size, "%" PRId64 "d %02" PRId64 ":%02" PRId64 ":%02" PRId64, centisecs / day,
(centisecs % day) / hour, (centisecs % hour) / min, (centisecs % min) / sec);
[[fallthrough]];
case TIME_HOURS:
if(centisecs >= hour)
return str_format(buffer, buffer_size, "%02" PRId64 ":%02" PRId64 ":%02" PRId64, centisecs / hour,
(centisecs % hour) / min, (centisecs % min) / sec);
[[fallthrough]];
case TIME_MINS:
return str_format(buffer, buffer_size, "%02" PRId64 ":%02" PRId64, centisecs / min,
(centisecs % min) / sec);
case TIME_HOURS_CENTISECS:
if(centisecs >= hour)
return str_format(buffer, buffer_size, "%02" PRId64 ":%02" PRId64 ":%02" PRId64 ".%02" PRId64, centisecs / hour,
(centisecs % hour) / min, (centisecs % min) / sec, centisecs % sec);
[[fallthrough]];
case TIME_MINS_CENTISECS:
return str_format(buffer, buffer_size, "%02" PRId64 ":%02" PRId64 ".%02" PRId64, centisecs / min,
(centisecs % min) / sec, centisecs % sec);
}
return -1;
}
int str_time_float(float secs, int format, char *buffer, int buffer_size)
{
return str_time(llroundf(secs * 100), format, buffer, buffer_size);
}
void str_escape(char **dst, const char *src, const char *end)
{
while(*src && *dst + 1 < end)
{
if(*src == '"' || *src == '\\') // escape \ and "
{
if(*dst + 2 < end)
*(*dst)++ = '\\';
else
break;
}
*(*dst)++ = *src++;
}
**dst = 0;
}
int mem_comp(const void *a, const void *b, int size)
{
return memcmp(a, b, size);
}
int mem_has_null(const void *block, unsigned size)
{
const unsigned char *bytes = (const unsigned char *)block;
unsigned i;
for(i = 0; i < size; i++)
{
if(bytes[i] == 0)
{
return 1;
}
}
return 0;
}
void net_stats(NETSTATS *stats_inout)
{
*stats_inout = network_stats;
}
int str_isspace(char c)
{
return c == ' ' || c == '\n' || c == '\r' || c == '\t';
}
char str_uppercase(char c)
{
if(c >= 'a' && c <= 'z')
return 'A' + (c - 'a');
return c;
}
int str_isallnum(const char *str)
{
while(*str)
{
if(!(*str >= '0' && *str <= '9'))
return 0;
str++;
}
return 1;
}
int str_toint(const char *str) { return atoi(str); }
int str_toint_base(const char *str, int base) { return strtol(str, NULL, base); }
unsigned long str_toulong_base(const char *str, int base) { return strtoul(str, NULL, base); }
float str_tofloat(const char *str) { return atof(str); }
int str_utf8_comp_nocase(const char *a, const char *b)
{
int code_a;
int code_b;
while(*a && *b)
{
code_a = str_utf8_tolower(str_utf8_decode(&a));
code_b = str_utf8_tolower(str_utf8_decode(&b));
if(code_a != code_b)
return code_a - code_b;
}
return (unsigned char)*a - (unsigned char)*b;
}
int str_utf8_comp_nocase_num(const char *a, const char *b, int num)
{
int code_a;
int code_b;
const char *old_a = a;
if(num <= 0)
return 0;
while(*a && *b)
{
code_a = str_utf8_tolower(str_utf8_decode(&a));
code_b = str_utf8_tolower(str_utf8_decode(&b));
if(code_a != code_b)
return code_a - code_b;
if(a - old_a >= num)
return 0;
}
return (unsigned char)*a - (unsigned char)*b;
}
const char *str_utf8_find_nocase(const char *haystack, const char *needle)
{
while(*haystack) /* native implementation */
{
const char *a = haystack;
const char *b = needle;
const char *a_next = a;
const char *b_next = b;
while(*a && *b && str_utf8_tolower(str_utf8_decode(&a_next)) == str_utf8_tolower(str_utf8_decode(&b_next)))
{
a = a_next;
b = b_next;
}
if(!(*b))
return haystack;
str_utf8_decode(&haystack);
}
return 0;
}
int str_utf8_isspace(int code)
{
return code <= 0x0020 || code == 0x0085 || code == 0x00A0 || code == 0x034F ||
code == 0x115F || code == 0x1160 || code == 0x1680 || code == 0x180E ||
(code >= 0x2000 && code <= 0x200F) || (code >= 0x2028 && code <= 0x202F) ||
(code >= 0x205F && code <= 0x2064) || (code >= 0x206A && code <= 0x206F) ||
code == 0x2800 || code == 0x3000 || code == 0x3164 ||
(code >= 0xFE00 && code <= 0xFE0F) || code == 0xFEFF || code == 0xFFA0 ||
(code >= 0xFFF9 && code <= 0xFFFC);
}
const char *str_utf8_skip_whitespaces(const char *str)
{
const char *str_old;
int code;
while(*str)
{
str_old = str;
code = str_utf8_decode(&str);
// check if unicode is not empty
if(!str_utf8_isspace(code))
{
return str_old;
}
}
return str;
}
void str_utf8_trim_right(char *param)
{
const char *str = param;
char *end = 0;
while(*str)
{
char *str_old = (char *)str;
int code = str_utf8_decode(&str);
// check if unicode is not empty
if(!str_utf8_isspace(code))
{
end = 0;
}
else if(!end)
{
end = str_old;
}
}
if(end)
{
*end = 0;
}
}
int str_utf8_isstart(char c)
{
if((c & 0xC0) == 0x80) /* 10xxxxxx */
return 0;
return 1;
}
int str_utf8_rewind(const char *str, int cursor)
{
while(cursor)
{
cursor--;
if(str_utf8_isstart(*(str + cursor)))
break;
}
return cursor;
}
int str_utf8_fix_truncation(char *str)
{
int len = str_length(str);
if(len > 0)
{
int last_char_index = str_utf8_rewind(str, len);
const char *last_char = str + last_char_index;
// Fix truncated UTF-8.
if(str_utf8_decode(&last_char) == -1)
{
str[last_char_index] = 0;
return last_char_index;
}
}
return len;
}
int str_utf8_forward(const char *str, int cursor)
{
const char *ptr = str + cursor;
if(str_utf8_decode(&ptr) == 0)
{
return cursor;
}
return ptr - str;
}
int str_utf8_encode(char *ptr, int chr)
{
/* encode */
if(chr <= 0x7F)
{
ptr[0] = (char)chr;
return 1;
}
else if(chr <= 0x7FF)
{
ptr[0] = 0xC0 | ((chr >> 6) & 0x1F);
ptr[1] = 0x80 | (chr & 0x3F);
return 2;
}
else if(chr <= 0xFFFF)
{
ptr[0] = 0xE0 | ((chr >> 12) & 0x0F);
ptr[1] = 0x80 | ((chr >> 6) & 0x3F);
ptr[2] = 0x80 | (chr & 0x3F);
return 3;
}
else if(chr <= 0x10FFFF)
{
ptr[0] = 0xF0 | ((chr >> 18) & 0x07);
ptr[1] = 0x80 | ((chr >> 12) & 0x3F);
ptr[2] = 0x80 | ((chr >> 6) & 0x3F);
ptr[3] = 0x80 | (chr & 0x3F);
return 4;
}
return 0;
}
static unsigned char str_byte_next(const char **ptr)
{
unsigned char byte_value = **ptr;
(*ptr)++;
return byte_value;
}
static void str_byte_rewind(const char **ptr)
{
(*ptr)--;
}
int str_utf8_decode(const char **ptr)
{
// As per https://encoding.spec.whatwg.org/#utf-8-decoder.
unsigned char utf8_lower_boundary = 0x80;
unsigned char utf8_upper_boundary = 0xBF;
int utf8_code_point = 0;
int utf8_bytes_seen = 0;
int utf8_bytes_needed = 0;
while(true)
{
unsigned char byte_value = str_byte_next(ptr);
if(utf8_bytes_needed == 0)
{
if(byte_value <= 0x7F)
{
return byte_value;
}
else if(0xC2 <= byte_value && byte_value <= 0xDF)
{
utf8_bytes_needed = 1;
utf8_code_point = byte_value - 0xC0;
}
else if(0xE0 <= byte_value && byte_value <= 0xEF)
{
if(byte_value == 0xE0)
utf8_lower_boundary = 0xA0;
if(byte_value == 0xED)
utf8_upper_boundary = 0x9F;
utf8_bytes_needed = 2;
utf8_code_point = byte_value - 0xE0;
}
else if(0xF0 <= byte_value && byte_value <= 0xF4)
{
if(byte_value == 0xF0)
utf8_lower_boundary = 0x90;
if(byte_value == 0xF4)
utf8_upper_boundary = 0x8F;
utf8_bytes_needed = 3;
utf8_code_point = byte_value - 0xF0;
}
else
{
return -1; // Error.
}
utf8_code_point = utf8_code_point << (6 * utf8_bytes_needed);
continue;
}
if(!(utf8_lower_boundary <= byte_value && byte_value <= utf8_upper_boundary))
{
// Resetting variables not necessary, will be done when
// the function is called again.
str_byte_rewind(ptr);
return -1;
}
utf8_lower_boundary = 0x80;
utf8_upper_boundary = 0xBF;
utf8_bytes_seen += 1;
utf8_code_point = utf8_code_point + ((byte_value - 0x80) << (6 * (utf8_bytes_needed - utf8_bytes_seen)));
if(utf8_bytes_seen != utf8_bytes_needed)
{
continue;
}
// Resetting variables not necessary, see above.
return utf8_code_point;
}
}
int str_utf8_check(const char *str)
{
int codepoint;
while((codepoint = str_utf8_decode(&str)))
{
if(codepoint == -1)
{
return 0;
}
}
return 1;
}
void str_utf8_stats(const char *str, int max_size, int max_count, int *size, int *count)
{
const char *cursor = str;
*size = 0;
*count = 0;
while(*size < max_size && *count < max_count)
{
if(str_utf8_decode(&cursor) == 0)
{
break;
}
if(cursor - str >= max_size)
{
break;
}
*size = cursor - str;
++(*count);
}
}
unsigned str_quickhash(const char *str)
{
unsigned hash = 5381;
for(; *str; str++)
hash = ((hash << 5) + hash) + (*str); /* hash * 33 + c */
return hash;
}
static const char *str_token_get(const char *str, const char *delim, int *length)
{
size_t len = strspn(str, delim);
if(len > 1)
str++;
else
str += len;
if(!*str)
return NULL;
*length = strcspn(str, delim);
return str;
}
int str_in_list(const char *list, const char *delim, const char *needle)
{
const char *tok = list;
int len = 0, notfound = 1, needlelen = str_length(needle);
while(notfound && (tok = str_token_get(tok, delim, &len)))
{
notfound = needlelen != len || str_comp_num(tok, needle, len);
tok = tok + len;
}
return !notfound;
}
const char *str_next_token(const char *str, const char *delim, char *buffer, int buffer_size)
{
int len = 0;
const char *tok = str_token_get(str, delim, &len);
if(len < 0 || tok == NULL)
{
buffer[0] = '\0';
return NULL;
}
len = buffer_size > len ? len : buffer_size - 1;
mem_copy(buffer, tok, len);
buffer[len] = '\0';
return tok + len;
}
int bytes_be_to_int(const unsigned char *bytes)
{
int Result;
unsigned char *pResult = (unsigned char *)&Result;
for(unsigned i = 0; i < sizeof(int); i++)
{
#if defined(CONF_ARCH_ENDIAN_BIG)
pResult[i] = bytes[i];
#else
pResult[i] = bytes[sizeof(int) - i - 1];
#endif
}
return Result;
}
void int_to_bytes_be(unsigned char *bytes, int value)
{
const unsigned char *pValue = (const unsigned char *)&value;
for(unsigned i = 0; i < sizeof(int); i++)
{
#if defined(CONF_ARCH_ENDIAN_BIG)
bytes[i] = pValue[i];
#else
bytes[sizeof(int) - i - 1] = pValue[i];
#endif
}
}
unsigned bytes_be_to_uint(const unsigned char *bytes)
{
return ((bytes[0] & 0xffu) << 24u) | ((bytes[1] & 0xffu) << 16u) | ((bytes[2] & 0xffu) << 8u) | (bytes[3] & 0xffu);
}
void uint_to_bytes_be(unsigned char *bytes, unsigned value)
{
bytes[0] = (value >> 24u) & 0xffu;
bytes[1] = (value >> 16u) & 0xffu;
bytes[2] = (value >> 8u) & 0xffu;
bytes[3] = value & 0xffu;
}
int pid()
{
#if defined(CONF_FAMILY_WINDOWS)
return _getpid();
#else
return getpid();
#endif
}
void cmdline_fix(int *argc, const char ***argv)
{
#if defined(CONF_FAMILY_WINDOWS)
int wide_argc = 0;
WCHAR **wide_argv = CommandLineToArgvW(GetCommandLineW(), &wide_argc);
dbg_assert(wide_argv != NULL, "CommandLineToArgvW failure");
int total_size = 0;
for(int i = 0; i < wide_argc; i++)
{
int size = WideCharToMultiByte(CP_UTF8, 0, wide_argv[i], -1, NULL, 0, NULL, NULL);
dbg_assert(size != 0, "WideCharToMultiByte failure");
total_size += size;
}
char **new_argv = (char **)malloc((wide_argc + 1) * sizeof(*new_argv));
new_argv[0] = (char *)malloc(total_size);
mem_zero(new_argv[0], total_size);
int remaining_size = total_size;
for(int i = 0; i < wide_argc; i++)
{
int size = WideCharToMultiByte(CP_UTF8, 0, wide_argv[i], -1, new_argv[i], remaining_size, NULL, NULL);
dbg_assert(size != 0, "WideCharToMultiByte failure");
remaining_size -= size;
new_argv[i + 1] = new_argv[i] + size;
}
new_argv[wide_argc] = 0;
*argc = wide_argc;
*argv = (const char **)new_argv;
#endif
}
void cmdline_free(int argc, const char **argv)
{
#if defined(CONF_FAMILY_WINDOWS)
free((void *)*argv);
free((char **)argv);
#endif
}
PROCESS shell_execute(const char *file)
{
#if defined(CONF_FAMILY_WINDOWS)
WCHAR wBuffer[512];
MultiByteToWideChar(CP_UTF8, 0, file, -1, wBuffer, std::size(wBuffer));
SHELLEXECUTEINFOW info;
mem_zero(&info, sizeof(SHELLEXECUTEINFOW));
info.cbSize = sizeof(SHELLEXECUTEINFOW);
info.lpVerb = L"open";
info.lpFile = wBuffer;
info.nShow = SW_SHOWMINNOACTIVE;
info.fMask = SEE_MASK_NOCLOSEPROCESS;
// Save and restore the FPU control word because ShellExecute might change it
unsigned oldcontrol87 = _control87(0u, 0u);
ShellExecuteExW(&info);
_control87(oldcontrol87, 0xffffffffu);
return info.hProcess;
#elif defined(CONF_FAMILY_UNIX)
char *argv[2];
pid_t pid;
argv[0] = (char *)file;
argv[1] = NULL;
pid = fork();
if(pid == -1)
{
return 0;
}
if(pid == 0)
{
execvp(file, argv);
_exit(1);
}
return pid;
#endif
}
int kill_process(PROCESS process)
{
#if defined(CONF_FAMILY_WINDOWS)
return TerminateProcess(process, 0);
#elif defined(CONF_FAMILY_UNIX)
int status;
kill(process, SIGTERM);
return !waitpid(process, &status, 0);
#endif
}
int open_link(const char *link)
{
#if defined(CONF_FAMILY_WINDOWS)
WCHAR wBuffer[512];
MultiByteToWideChar(CP_UTF8, 0, link, -1, wBuffer, std::size(wBuffer));
SHELLEXECUTEINFOW info;
mem_zero(&info, sizeof(SHELLEXECUTEINFOW));
info.cbSize = sizeof(SHELLEXECUTEINFOW);
info.lpVerb = NULL; // NULL to use the default verb, as "open" may not be available
info.lpFile = wBuffer;
info.nShow = SW_SHOWNORMAL;
// The SEE_MASK_NOASYNC flag ensures that the ShellExecuteEx function
// finishes its DDE conversation before it returns, so it's not necessary
// to pump messages in the calling thread.
// The SEE_MASK_FLAG_NO_UI flag suppresses error messages that would pop up
// when the link cannot be opened, e.g. when a folder does not exist.
// The SEE_MASK_ASYNCOK flag is not used. It would allow the call to
// ShellExecuteEx to return earlier, but it also prevents us from doing
// our own error handling, as the function would always return TRUE.
info.fMask = SEE_MASK_NOASYNC | SEE_MASK_FLAG_NO_UI;
// Save and restore the FPU control word because ShellExecute might change it
unsigned oldcontrol87 = _control87(0u, 0u);
BOOL success = ShellExecuteExW(&info);
_control87(oldcontrol87, 0xffffffffu);
return success;
#elif defined(CONF_PLATFORM_LINUX)
const int pid = fork();
if(pid == 0)
execlp("xdg-open", "xdg-open", link, nullptr);
return pid > 0;
#elif defined(CONF_FAMILY_UNIX)
const int pid = fork();
if(pid == 0)
execlp("open", "open", link, nullptr);
return pid > 0;
#endif
}
int open_file(const char *path)
{
#if defined(CONF_PLATFORM_MACOS)
return open_link(path);
#else
// Create a file link so the path can contain forward and
// backward slashes. But the file link must be absolute.
char buf[512];
char workingDir[IO_MAX_PATH_LENGTH];
if(fs_is_relative_path(path))
{
fs_getcwd(workingDir, sizeof(workingDir));
str_append(workingDir, "/", sizeof(workingDir));
}
else
workingDir[0] = '\0';
str_format(buf, sizeof(buf), "file://%s%s", workingDir, path);
return open_link(buf);
#endif
}
struct SECURE_RANDOM_DATA
{
int initialized;
#if defined(CONF_FAMILY_WINDOWS)
HCRYPTPROV provider;
#else
IOHANDLE urandom;
#endif
};
static struct SECURE_RANDOM_DATA secure_random_data = {0};
int secure_random_init()
{
if(secure_random_data.initialized)
{
return 0;
}
#if defined(CONF_FAMILY_WINDOWS)
if(CryptAcquireContext(&secure_random_data.provider, NULL, NULL, PROV_RSA_FULL, CRYPT_VERIFYCONTEXT))
{
secure_random_data.initialized = 1;
return 0;
}
else
{
return 1;
}
#else
secure_random_data.urandom = io_open("/dev/urandom", IOFLAG_READ);
if(secure_random_data.urandom)
{
secure_random_data.initialized = 1;
return 0;
}
else
{
return 1;
}
#endif
}
int secure_random_uninit()
{
if(!secure_random_data.initialized)
{
return 0;
}
#if defined(CONF_FAMILY_WINDOWS)
if(CryptReleaseContext(secure_random_data.provider, 0))
{
secure_random_data.initialized = 0;
return 0;
}
else
{
return 1;
}
#else
if(!io_close(secure_random_data.urandom))
{
secure_random_data.initialized = 0;
return 0;
}
else
{
return 1;
}
#endif
}
void generate_password(char *buffer, unsigned length, unsigned short *random, unsigned random_length)
{
static const char VALUES[] = "ABCDEFGHKLMNPRSTUVWXYZabcdefghjkmnopqt23456789";
static const size_t NUM_VALUES = sizeof(VALUES) - 1; // Disregard the '\0'.
unsigned i;
dbg_assert(length >= random_length * 2 + 1, "too small buffer");
dbg_assert(NUM_VALUES * NUM_VALUES >= 2048, "need at least 2048 possibilities for 2-character sequences");
buffer[random_length * 2] = 0;
for(i = 0; i < random_length; i++)
{
unsigned short random_number = random[i] % 2048;
buffer[2 * i + 0] = VALUES[random_number / NUM_VALUES];
buffer[2 * i + 1] = VALUES[random_number % NUM_VALUES];
}
}
#define MAX_PASSWORD_LENGTH 128
void secure_random_password(char *buffer, unsigned length, unsigned pw_length)
{
unsigned short random[MAX_PASSWORD_LENGTH / 2];
// With 6 characters, we get a password entropy of log(2048) * 6/2 = 33bit.
dbg_assert(length >= pw_length + 1, "too small buffer");
dbg_assert(pw_length >= 6, "too small password length");
dbg_assert(pw_length % 2 == 0, "need an even password length");
dbg_assert(pw_length <= MAX_PASSWORD_LENGTH, "too large password length");
secure_random_fill(random, pw_length);
generate_password(buffer, length, random, pw_length / 2);
}
#undef MAX_PASSWORD_LENGTH
void secure_random_fill(void *bytes, unsigned length)
{
if(!secure_random_data.initialized)
{
dbg_msg("secure", "called secure_random_fill before secure_random_init");
dbg_break();
}
#if defined(CONF_FAMILY_WINDOWS)
if(!CryptGenRandom(secure_random_data.provider, length, (unsigned char *)bytes))
{
dbg_msg("secure", "CryptGenRandom failed, last_error=%ld", GetLastError());
dbg_break();
}
#else
if(length != io_read(secure_random_data.urandom, bytes, length))
{
dbg_msg("secure", "io_read returned with a short read");
dbg_break();
}
#endif
}
int secure_rand()
{
unsigned int i;
secure_random_fill(&i, sizeof(i));
return (int)(i % RAND_MAX);
}
// From https://graphics.stanford.edu/~seander/bithacks.html#RoundUpPowerOf2.
static unsigned int find_next_power_of_two_minus_one(unsigned int n)
{
n--;
n |= n >> 1;
n |= n >> 2;
n |= n >> 4;
n |= n >> 4;
n |= n >> 16;
return n;
}
int secure_rand_below(int below)
{
unsigned int mask = find_next_power_of_two_minus_one(below);
dbg_assert(below > 0, "below must be positive");
while(true)
{
unsigned int n;
secure_random_fill(&n, sizeof(n));
n &= mask;
if((int)n < below)
{
return n;
}
}
}
int os_version_str(char *version, int length)
{
#if defined(CONF_FAMILY_WINDOWS)
const WCHAR *module_path = L"kernel32.dll";
DWORD handle;
DWORD size = GetFileVersionInfoSizeW(module_path, &handle);
if(!size)
{
return 1;
}
void *data = malloc(size);
if(!GetFileVersionInfoW(module_path, handle, size, data))
{
free(data);
return 1;
}
VS_FIXEDFILEINFO *fileinfo;
UINT unused;
if(!VerQueryValueW(data, L"\\", (void **)&fileinfo, &unused))
{
free(data);
return 1;
}
str_format(version, length, "Windows %hu.%hu.%hu.%hu",
HIWORD(fileinfo->dwProductVersionMS),
LOWORD(fileinfo->dwProductVersionMS),
HIWORD(fileinfo->dwProductVersionLS),
LOWORD(fileinfo->dwProductVersionLS));
free(data);
return 0;
#else
struct utsname u;
if(uname(&u))
{
return 1;
}
char extra[128];
extra[0] = 0;
do
{
IOHANDLE os_release = io_open("/etc/os-release", IOFLAG_READ);
char buf[4096];
int read;
int offset;
char *newline;
if(!os_release)
{
break;
}
read = io_read(os_release, buf, sizeof(buf) - 1);
io_close(os_release);
buf[read] = 0;
if(str_startswith(buf, "PRETTY_NAME="))
{
offset = 0;
}
else
{
const char *found = str_find(buf, "\nPRETTY_NAME=");
if(!found)
{
break;
}
offset = found - buf + 1;
}
newline = (char *)str_find(buf + offset, "\n");
if(newline)
{
*newline = 0;
}
str_format(extra, sizeof(extra), "; %s", buf + offset + 12);
} while(false);
str_format(version, length, "%s %s (%s, %s)%s", u.sysname, u.release, u.machine, u.version, extra);
return 0;
#endif
}
#if defined(CONF_EXCEPTION_HANDLING)
#if defined(CONF_FAMILY_WINDOWS)
static HMODULE exception_handling_module = nullptr;
#endif
void init_exception_handler()
{
#if defined(CONF_FAMILY_WINDOWS)
const char *module_name = "exchndl.dll";
exception_handling_module = LoadLibraryA(module_name);
if(exception_handling_module == nullptr)
{
dbg_msg("exception_handling", "failed to load exception handling library '%s' (error %ld)", module_name, GetLastError());
}
#else
#error exception handling not implemented
#endif
}
void set_exception_handler_log_file(const char *log_file_path)
{
#if defined(CONF_FAMILY_WINDOWS)
if(exception_handling_module != nullptr)
{
WCHAR wBuffer[IO_MAX_PATH_LENGTH];
MultiByteToWideChar(CP_UTF8, 0, log_file_path, -1, wBuffer, std::size(wBuffer));
// Intentional
#ifdef __MINGW32__
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wcast-function-type"
#endif
const char *function_name = "ExcHndlSetLogFileNameW";
auto exception_log_file_path_func = (BOOL APIENTRY(*)(const WCHAR *))(GetProcAddress(exception_handling_module, function_name));
#ifdef __MINGW32__
#pragma GCC diagnostic pop
#endif
if(exception_log_file_path_func == nullptr)
dbg_msg("exception_handling", "could not find function '%s' in exception handling library (error %ld)", function_name, GetLastError());
else
exception_log_file_path_func(wBuffer);
}
#else
#error exception handling not implemented
#endif
}
#endif
}
std::chrono::nanoseconds time_get_nanoseconds()
{
return std::chrono::nanoseconds(time_get_impl());
}
int net_socket_read_wait(NETSOCKET sock, std::chrono::nanoseconds nanoseconds)
{
using namespace std::chrono_literals;
return ::net_socket_read_wait(sock, (nanoseconds / std::chrono::nanoseconds(1us).count()).count());
}
#if defined(CONF_FAMILY_WINDOWS)
// See https://learn.microsoft.com/en-us/windows/win32/learnwin32/initializing-the-com-library
CWindowsComLifecycle::CWindowsComLifecycle(bool HasWindow)
{
HRESULT result = CoInitializeEx(NULL, (HasWindow ? COINIT_APARTMENTTHREADED : COINIT_MULTITHREADED) | COINIT_DISABLE_OLE1DDE);
dbg_assert(result != S_FALSE, "COM library already initialized on this thread");
dbg_assert(result == S_OK, "COM library initialization failed");
}
CWindowsComLifecycle::~CWindowsComLifecycle()
{
CoUninitialize();
}
#endif
size_t std::hash<NETADDR>::operator()(const NETADDR &Addr) const noexcept
{
return std::hash<std::string_view>{}(std::string_view((const char *)&Addr, sizeof(Addr)));
}