ddnet/src/base/vmath.h

237 lines
8 KiB
C++

/* (c) Magnus Auvinen. See licence.txt in the root of the distribution for more information. */
/* If you are missing that file, acquire a complete release at teeworlds.com. */
#ifndef BASE_VMATH_H
#define BASE_VMATH_H
#include <math.h>
#include "math.h" // mix
// ------------------------------------
template<typename T>
class vector2_base
{
public:
union { T x,u; };
union { T y,v; };
vector2_base() {}
vector2_base(T nx, T ny)
{
x = nx;
y = ny;
}
vector2_base operator -() const { return vector2_base(-x, -y); }
vector2_base operator -(const vector2_base &v) const { return vector2_base(x-v.x, y-v.y); }
vector2_base operator +(const vector2_base &v) const { return vector2_base(x+v.x, y+v.y); }
vector2_base operator *(const T v) const { return vector2_base(x*v, y*v); }
vector2_base operator *(const vector2_base &v) const { return vector2_base(x*v.x, y*v.y); }
vector2_base operator /(const T v) const { return vector2_base(x/v, y/v); }
vector2_base operator /(const vector2_base &v) const { return vector2_base(x/v.x, y/v.y); }
const vector2_base &operator =(const vector2_base &v) { x = v.x; y = v.y; return *this; }
const vector2_base &operator +=(const vector2_base &v) { x += v.x; y += v.y; return *this; }
const vector2_base &operator -=(const vector2_base &v) { x -= v.x; y -= v.y; return *this; }
const vector2_base &operator *=(const T v) { x *= v; y *= v; return *this; }
const vector2_base &operator *=(const vector2_base &v) { x *= v.x; y *= v.y; return *this; }
const vector2_base &operator /=(const T v) { x /= v; y /= v; return *this; }
const vector2_base &operator /=(const vector2_base &v) { x /= v.x; y /= v.y; return *this; }
bool operator ==(const vector2_base &v) const { return x == v.x && y == v.y; } //TODO: do this with an eps instead
bool operator !=(const vector2_base &v) const { return x != v.x || y != v.y; }
operator const T* () { return &x; }
};
template<typename T>
inline vector2_base<T> rotate(const vector2_base<T> &a, float angle)
{
angle = angle * pi / 180.0f;
float s = sinf(angle);
float c = cosf(angle);
return vector2_base<T>((T)(c*a.x - s*a.y), (T)(s*a.x + c*a.y));
}
template<typename T>
inline T distance(const vector2_base<T> &a, const vector2_base<T> &b)
{
return length(a-b);
}
template<typename T>
inline T dot(const vector2_base<T> &a, const vector2_base<T> &b)
{
return a.x*b.x + a.y*b.y;
}
template<typename T>
inline vector2_base<T> closest_point_on_line(vector2_base<T> line_point0, vector2_base<T> line_point1, vector2_base<T> target_point)
{
vector2_base<T> c = target_point - line_point0;
vector2_base<T> v = (line_point1 - line_point0);
v = normalize(v);
T d = length(line_point0-line_point1);
T t = dot(v, c)/d;
return mix(line_point0, line_point1, clamp(t, (T)0, (T)1));
/*
if (t < 0) t = 0;
if (t > 1.0f) return 1.0f;
return t;*/
}
//
inline float length(const vector2_base<float> &a)
{
return sqrtf(a.x*a.x + a.y*a.y);
}
inline float angle(const vector2_base<float> &a)
{
return atan2f(a.y, a.x);
}
inline vector2_base<float> normalize(const vector2_base<float> &v)
{
float l = (float)(1.0f/sqrtf(v.x*v.x + v.y*v.y));
return vector2_base<float>(v.x*l, v.y*l);
}
inline vector2_base<float> direction(float angle)
{
return vector2_base<float>(cosf(angle), sinf(angle));
}
typedef vector2_base<float> vec2;
typedef vector2_base<bool> bvec2;
typedef vector2_base<int> ivec2;
// ------------------------------------
template<typename T>
class vector3_base
{
public:
union { T x,r,h; };
union { T y,g,s; };
union { T z,b,v,l; };
vector3_base() {}
vector3_base(T nx, T ny, T nz)
{
x = nx;
y = ny;
z = nz;
}
const vector3_base &operator =(const vector3_base &v) { x = v.x; y = v.y; z = v.z; return *this; }
vector3_base operator -(const vector3_base &v) const { return vector3_base(x-v.x, y-v.y, z-v.z); }
vector3_base operator -() const { return vector3_base(-x, -y, -z); }
vector3_base operator +(const vector3_base &v) const { return vector3_base(x+v.x, y+v.y, z+v.z); }
vector3_base operator *(const T v) const { return vector3_base(x*v, y*v, z*v); }
vector3_base operator *(const vector3_base &v) const { return vector3_base(x*v.x, y*v.y, z*v.z); }
vector3_base operator /(const T v) const { return vector3_base(x/v, y/v, z/v); }
vector3_base operator /(const vector3_base &v) const { return vector3_base(x/v.x, y/v.y, z/v.z); }
const vector3_base &operator +=(const vector3_base &v) { x += v.x; y += v.y; z += v.z; return *this; }
const vector3_base &operator -=(const vector3_base &v) { x -= v.x; y -= v.y; z -= v.z; return *this; }
const vector3_base &operator *=(const T v) { x *= v; y *= v; z *= v; return *this; }
const vector3_base &operator *=(const vector3_base &v) { x *= v.x; y *= v.y; z *= v.z; return *this; }
const vector3_base &operator /=(const T v) { x /= v; y /= v; z /= v; return *this; }
const vector3_base &operator /=(const vector3_base &v) { x /= v.x; y /= v.y; z /= v.z; return *this; }
bool operator ==(const vector3_base &v) const { return x == v.x && y == v.y && z == v.z; } //TODO: do this with an eps instead
bool operator !=(const vector3_base &v) const { return x != v.x || y != v.y || z != v.z; }
operator const T* () { return &x; }
};
template<typename T>
inline T distance(const vector3_base<T> &a, const vector3_base<T> &b)
{
return length(a-b);
}
template<typename T>
inline T dot(const vector3_base<T> &a, const vector3_base<T> &b)
{
return a.x*b.x + a.y*b.y + a.z*b.z;
}
template<typename T>
inline vector3_base<T> cross(const vector3_base<T> &a, const vector3_base<T> &b)
{
return vector3_base<T>(
a.y*b.z - a.z*b.y,
a.z*b.x - a.x*b.z,
a.x*b.y - a.y*b.x);
}
//
inline float length(const vector3_base<float> &a)
{
return sqrtf(a.x*a.x + a.y*a.y + a.z*a.z);
}
inline vector3_base<float> normalize(const vector3_base<float> &v)
{
float l = (float)(1.0f/sqrtf(v.x*v.x + v.y*v.y + v.z*v.z));
return vector3_base<float>(v.x*l, v.y*l, v.z*l);
}
typedef vector3_base<float> vec3;
typedef vector3_base<bool> bvec3;
typedef vector3_base<int> ivec3;
// ------------------------------------
template<typename T>
class vector4_base
{
public:
union { T x,r; };
union { T y,g; };
union { T z,b; };
union { T w,a; };
vector4_base() {}
vector4_base(T nx, T ny, T nz, T nw)
{
x = nx;
y = ny;
z = nz;
w = nw;
}
vector4_base operator +(const vector4_base &v) const { return vector4_base(x+v.x, y+v.y, z+v.z, w+v.w); }
vector4_base operator -(const vector4_base &v) const { return vector4_base(x-v.x, y-v.y, z-v.z, w-v.w); }
vector4_base operator -() const { return vector4_base(-x, -y, -z, -w); }
vector4_base operator *(const vector4_base &v) const { return vector4_base(x*v.x, y*v.y, z*v.z, w*v.w); }
vector4_base operator *(const T v) const { return vector4_base(x*v, y*v, z*v, w*v); }
vector4_base operator /(const vector4_base &v) const { return vector4_base(x/v.x, y/v.y, z/v.z, w/v.w); }
vector4_base operator /(const T v) const { return vector4_base(x/v, y/v, z/v, w/v); }
const vector4_base &operator =(const vector4_base &v) { x = v.x; y = v.y; z = v.z; w = v.w; return *this; }
const vector4_base &operator +=(const vector4_base &v) { x += v.x; y += v.y; z += v.z; w += v.w; return *this; }
const vector4_base &operator -=(const vector4_base &v) { x -= v.x; y -= v.y; z -= v.z; w -= v.w; return *this; }
const vector4_base &operator *=(const T v) { x *= v; y *= v; z *= v; w *= v; return *this; }
const vector4_base &operator *=(const vector4_base &v) { x *= v.x; y *= v.y; z *= v.z; w *= v.w; return *this; }
const vector4_base &operator /=(const T v) { x /= v; y /= v; z /= v; w /= v; return *this; }
const vector4_base &operator /=(const vector4_base &v) { x /= v.x; y /= v.y; z /= v.z; w /= v.w; return *this; }
bool operator ==(const vector4_base &v) const { return x == v.x && y == v.y && z == v.z && w == v.w; } //TODO: do this with an eps instead
bool operator !=(const vector4_base &v) const { return x != v.x || y != v.y || z != v.z || w != v.w; }
operator const T* () { return &x; }
};
typedef vector4_base<float> vec4;
typedef vector4_base<bool> bvec4;
typedef vector4_base<int> ivec4;
#endif