ddnet/src/base/hash_libtomcrypt.c
2018-07-10 17:29:02 +08:00

203 lines
5.5 KiB
C
Executable file

// SHA-256. Adapted from https://github.com/kalven/sha-2, which was adapted
// from LibTomCrypt. This code is Public Domain.
#if !defined(CONF_OPENSSL)
#include "hash_ctxt.h"
#include <stddef.h>
#include <stdint.h>
#include <string.h>
typedef uint32_t u32;
typedef uint64_t u64;
typedef SHA256_CTX sha256_state;
static const u32 K[64] =
{
0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL, 0x3956c25bUL,
0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL, 0xd807aa98UL, 0x12835b01UL,
0x243185beUL, 0x550c7dc3UL, 0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL,
0xc19bf174UL, 0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL,
0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL, 0x983e5152UL,
0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL, 0xc6e00bf3UL, 0xd5a79147UL,
0x06ca6351UL, 0x14292967UL, 0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL,
0x53380d13UL, 0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL,
0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL, 0xd192e819UL,
0xd6990624UL, 0xf40e3585UL, 0x106aa070UL, 0x19a4c116UL, 0x1e376c08UL,
0x2748774cUL, 0x34b0bcb5UL, 0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL,
0x682e6ff3UL, 0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL,
0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL
};
static u32 min(u32 x, u32 y)
{
return x < y ? x : y;
}
static u32 load32(const unsigned char* y)
{
return ((u32)y[0] << 24) | ((u32)y[1] << 16) | ((u32)y[2] << 8) | ((u32)y[3] << 0);
}
static void store64(u64 x, unsigned char* y)
{
int i;
for(i = 0; i != 8; ++i)
y[i] = (x >> ((7-i) * 8)) & 255;
}
static void store32(u32 x, unsigned char* y)
{
int i;
for(i = 0; i != 4; ++i)
y[i] = (x >> ((3-i) * 8)) & 255;
}
static u32 Ch(u32 x, u32 y, u32 z) { return z ^ (x & (y ^ z)); }
static u32 Maj(u32 x, u32 y, u32 z) { return ((x | y) & z) | (x & y); }
static u32 Rot(u32 x, u32 n) { return (x >> (n & 31)) | (x << (32 - (n & 31))); }
static u32 Sh(u32 x, u32 n) { return x >> n; }
static u32 Sigma0(u32 x) { return Rot(x, 2) ^ Rot(x, 13) ^ Rot(x, 22); }
static u32 Sigma1(u32 x) { return Rot(x, 6) ^ Rot(x, 11) ^ Rot(x, 25); }
static u32 Gamma0(u32 x) { return Rot(x, 7) ^ Rot(x, 18) ^ Sh(x, 3); }
static u32 Gamma1(u32 x) { return Rot(x, 17) ^ Rot(x, 19) ^ Sh(x, 10); }
static void sha_compress(sha256_state* md, const unsigned char* buf)
{
u32 S[8], W[64], t0, t1, t;
int i;
// Copy state into S
for(i = 0; i < 8; i++)
S[i] = md->state[i];
// Copy the state into 512-bits into W[0..15]
for(i = 0; i < 16; i++)
W[i] = load32(buf + (4*i));
// Fill W[16..63]
for(i = 16; i < 64; i++)
W[i] = Gamma1(W[i - 2]) + W[i - 7] + Gamma0(W[i - 15]) + W[i - 16];
// Compress
#define RND(a, b, c, d, e, f, g, h, i) \
{ \
t0 = h + Sigma1(e) + Ch(e, f, g) + K[i] + W[i]; \
t1 = Sigma0(a) + Maj(a, b, c); \
d += t0; \
h = t0 + t1; \
}
for(i = 0; i < 64; ++i)
{
RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],i);
t = S[7]; S[7] = S[6]; S[6] = S[5]; S[5] = S[4];
S[4] = S[3]; S[3] = S[2]; S[2] = S[1]; S[1] = S[0]; S[0] = t;
}
// Feedback
for(i = 0; i < 8; i++)
md->state[i] = md->state[i] + S[i];
}
// Public interface
static void sha_init(sha256_state* md)
{
md->curlen = 0;
md->length = 0;
md->state[0] = 0x6A09E667UL;
md->state[1] = 0xBB67AE85UL;
md->state[2] = 0x3C6EF372UL;
md->state[3] = 0xA54FF53AUL;
md->state[4] = 0x510E527FUL;
md->state[5] = 0x9B05688CUL;
md->state[6] = 0x1F83D9ABUL;
md->state[7] = 0x5BE0CD19UL;
}
static void sha_process(sha256_state* md, const void* src, u32 inlen)
{
const u32 block_size = 64;
const unsigned char* in = src;
while(inlen > 0)
{
if(md->curlen == 0 && inlen >= block_size)
{
sha_compress(md, in);
md->length += block_size * 8;
in += block_size;
inlen -= block_size;
}
else
{
u32 n = min(inlen, (block_size - md->curlen));
memcpy(md->buf + md->curlen, in, n);
md->curlen += n;
in += n;
inlen -= n;
if(md->curlen == block_size)
{
sha_compress(md, md->buf);
md->length += 8*block_size;
md->curlen = 0;
}
}
}
}
static void sha_done(sha256_state* md, void* out)
{
int i;
// Increase the length of the message
md->length += md->curlen * 8;
// Append the '1' bit
md->buf[md->curlen++] = (unsigned char)0x80;
// If the length is currently above 56 bytes we append zeros then compress.
// Then we can fall back to padding zeros and length encoding like normal.
if(md->curlen > 56)
{
while(md->curlen < 64)
md->buf[md->curlen++] = 0;
sha_compress(md, md->buf);
md->curlen = 0;
}
// Pad up to 56 bytes of zeroes
while(md->curlen < 56)
md->buf[md->curlen++] = 0;
// Store length
store64(md->length, md->buf+56);
sha_compress(md, md->buf);
// Copy output
for(i = 0; i < 8; i++)
store32(md->state[i], (unsigned char *)out+(4*i));
}
void sha256_init(SHA256_CTX *ctxt)
{
sha_init(ctxt);
}
void sha256_update(SHA256_CTX *ctxt, const void *data, size_t data_len)
{
sha_process(ctxt, data, data_len);
}
SHA256_DIGEST sha256_finish(SHA256_CTX *ctxt)
{
SHA256_DIGEST result;
sha_done(ctxt, result.data);
return result;
}
#endif