/* (c) Magnus Auvinen. See licence.txt in the root of the distribution for more information. */
/* If you are missing that file, acquire a complete release at teeworlds.com. */
#include
#include
#include
#include "render.h"
#include
#include
#include
#include
using namespace std::chrono_literals;
void CRenderTools::RenderEvalEnvelope(CEnvPoint *pPoints, int NumPoints, int Channels, std::chrono::nanoseconds TimeNanos, float *pResult)
{
if(NumPoints == 0)
{
pResult[0] = 0;
pResult[1] = 0;
pResult[2] = 0;
pResult[3] = 0;
return;
}
if(NumPoints == 1)
{
pResult[0] = fx2f(pPoints[0].m_aValues[0]);
pResult[1] = fx2f(pPoints[0].m_aValues[1]);
pResult[2] = fx2f(pPoints[0].m_aValues[2]);
pResult[3] = fx2f(pPoints[0].m_aValues[3]);
return;
}
int64_t MaxPointTime = (int64_t)pPoints[NumPoints - 1].m_Time * std::chrono::nanoseconds(1ms).count();
if(MaxPointTime > 0) // TODO: remove this check when implementing a IO check for maps(in this case broken envelopes)
TimeNanos = std::chrono::nanoseconds(TimeNanos.count() % MaxPointTime);
else
TimeNanos = decltype(TimeNanos)::zero();
int TimeMillis = (int)(TimeNanos / std::chrono::nanoseconds(1ms).count()).count();
for(int i = 0; i < NumPoints - 1; i++)
{
if(TimeMillis >= pPoints[i].m_Time && TimeMillis <= pPoints[i + 1].m_Time)
{
float Delta = pPoints[i + 1].m_Time - pPoints[i].m_Time;
float a = (float)(((double)TimeNanos.count() / (double)std::chrono::nanoseconds(1ms).count()) - pPoints[i].m_Time) / Delta;
if(pPoints[i].m_Curvetype == CURVETYPE_SMOOTH)
a = -2 * a * a * a + 3 * a * a; // second hermite basis
else if(pPoints[i].m_Curvetype == CURVETYPE_SLOW)
a = a * a * a;
else if(pPoints[i].m_Curvetype == CURVETYPE_FAST)
{
a = 1 - a;
a = 1 - a * a * a;
}
else if(pPoints[i].m_Curvetype == CURVETYPE_STEP)
a = 0;
else
{
// linear
}
for(int c = 0; c < Channels; c++)
{
float v0 = fx2f(pPoints[i].m_aValues[c]);
float v1 = fx2f(pPoints[i + 1].m_aValues[c]);
pResult[c] = v0 + (v1 - v0) * a;
}
return;
}
}
pResult[0] = fx2f(pPoints[NumPoints - 1].m_aValues[0]);
pResult[1] = fx2f(pPoints[NumPoints - 1].m_aValues[1]);
pResult[2] = fx2f(pPoints[NumPoints - 1].m_aValues[2]);
pResult[3] = fx2f(pPoints[NumPoints - 1].m_aValues[3]);
}
static void Rotate(CPoint *pCenter, CPoint *pPoint, float Rotation)
{
int x = pPoint->x - pCenter->x;
int y = pPoint->y - pCenter->y;
pPoint->x = (int)(x * cosf(Rotation) - y * sinf(Rotation) + pCenter->x);
pPoint->y = (int)(x * sinf(Rotation) + y * cosf(Rotation) + pCenter->y);
}
void CRenderTools::RenderQuads(CQuad *pQuads, int NumQuads, int RenderFlags, ENVELOPE_EVAL pfnEval, void *pUser)
{
if(!g_Config.m_ClShowQuads || g_Config.m_ClOverlayEntities == 100)
return;
ForceRenderQuads(pQuads, NumQuads, RenderFlags, pfnEval, pUser, (100 - g_Config.m_ClOverlayEntities) / 100.0f);
}
void CRenderTools::ForceRenderQuads(CQuad *pQuads, int NumQuads, int RenderFlags, ENVELOPE_EVAL pfnEval, void *pUser, float Alpha)
{
Graphics()->TrianglesBegin();
float Conv = 1 / 255.0f;
for(int i = 0; i < NumQuads; i++)
{
CQuad *q = &pQuads[i];
float r = 1, g = 1, b = 1, a = 1;
if(q->m_ColorEnv >= 0)
{
float aChannels[4];
pfnEval(q->m_ColorEnvOffset, q->m_ColorEnv, aChannels, pUser);
r = aChannels[0];
g = aChannels[1];
b = aChannels[2];
a = aChannels[3];
}
if(a <= 0)
continue;
bool Opaque = false;
/* TODO: Analyze quadtexture
if(a < 0.01f || (q->m_aColors[0].a < 0.01f && q->m_aColors[1].a < 0.01f && q->m_aColors[2].a < 0.01f && q->m_aColors[3].a < 0.01f))
Opaque = true;
*/
if(Opaque && !(RenderFlags & LAYERRENDERFLAG_OPAQUE))
continue;
if(!Opaque && !(RenderFlags & LAYERRENDERFLAG_TRANSPARENT))
continue;
Graphics()->QuadsSetSubsetFree(
fx2f(q->m_aTexcoords[0].x), fx2f(q->m_aTexcoords[0].y),
fx2f(q->m_aTexcoords[1].x), fx2f(q->m_aTexcoords[1].y),
fx2f(q->m_aTexcoords[2].x), fx2f(q->m_aTexcoords[2].y),
fx2f(q->m_aTexcoords[3].x), fx2f(q->m_aTexcoords[3].y));
float OffsetX = 0;
float OffsetY = 0;
float Rot = 0;
// TODO: fix this
if(q->m_PosEnv >= 0)
{
float aChannels[4];
pfnEval(q->m_PosEnvOffset, q->m_PosEnv, aChannels, pUser);
OffsetX = aChannels[0];
OffsetY = aChannels[1];
Rot = aChannels[2] / 360.0f * pi * 2;
}
IGraphics::CColorVertex Array[4] = {
IGraphics::CColorVertex(0, q->m_aColors[0].r * Conv * r, q->m_aColors[0].g * Conv * g, q->m_aColors[0].b * Conv * b, q->m_aColors[0].a * Conv * a * Alpha),
IGraphics::CColorVertex(1, q->m_aColors[1].r * Conv * r, q->m_aColors[1].g * Conv * g, q->m_aColors[1].b * Conv * b, q->m_aColors[1].a * Conv * a * Alpha),
IGraphics::CColorVertex(2, q->m_aColors[2].r * Conv * r, q->m_aColors[2].g * Conv * g, q->m_aColors[2].b * Conv * b, q->m_aColors[2].a * Conv * a * Alpha),
IGraphics::CColorVertex(3, q->m_aColors[3].r * Conv * r, q->m_aColors[3].g * Conv * g, q->m_aColors[3].b * Conv * b, q->m_aColors[3].a * Conv * a * Alpha)};
Graphics()->SetColorVertex(Array, 4);
CPoint *pPoints = q->m_aPoints;
if(Rot != 0)
{
static CPoint aRotated[4];
aRotated[0] = q->m_aPoints[0];
aRotated[1] = q->m_aPoints[1];
aRotated[2] = q->m_aPoints[2];
aRotated[3] = q->m_aPoints[3];
pPoints = aRotated;
Rotate(&q->m_aPoints[4], &aRotated[0], Rot);
Rotate(&q->m_aPoints[4], &aRotated[1], Rot);
Rotate(&q->m_aPoints[4], &aRotated[2], Rot);
Rotate(&q->m_aPoints[4], &aRotated[3], Rot);
}
IGraphics::CFreeformItem Freeform(
fx2f(pPoints[0].x) + OffsetX, fx2f(pPoints[0].y) + OffsetY,
fx2f(pPoints[1].x) + OffsetX, fx2f(pPoints[1].y) + OffsetY,
fx2f(pPoints[2].x) + OffsetX, fx2f(pPoints[2].y) + OffsetY,
fx2f(pPoints[3].x) + OffsetX, fx2f(pPoints[3].y) + OffsetY);
Graphics()->QuadsDrawFreeform(&Freeform, 1);
}
Graphics()->TrianglesEnd();
}
void CRenderTools::RenderTileRectangle(int RectX, int RectY, int RectW, int RectH,
unsigned char IndexIn, unsigned char IndexOut,
float Scale, ColorRGBA Color, int RenderFlags,
ENVELOPE_EVAL pfnEval, void *pUser, int ColorEnv, int ColorEnvOffset)
{
float ScreenX0, ScreenY0, ScreenX1, ScreenY1;
Graphics()->GetScreen(&ScreenX0, &ScreenY0, &ScreenX1, &ScreenY1);
// calculate the final pixelsize for the tiles
float TilePixelSize = 1024 / 32.0f;
float FinalTileSize = Scale / (ScreenX1 - ScreenX0) * Graphics()->ScreenWidth();
float FinalTilesetScale = FinalTileSize / TilePixelSize;
float r = 1, g = 1, b = 1, a = 1;
if(ColorEnv >= 0)
{
float aChannels[4];
pfnEval(ColorEnvOffset, ColorEnv, aChannels, pUser);
r = aChannels[0];
g = aChannels[1];
b = aChannels[2];
a = aChannels[3];
}
Graphics()->QuadsBegin();
Graphics()->SetColor(Color.r * r, Color.g * g, Color.b * b, Color.a * a);
int StartY = (int)(ScreenY0 / Scale) - 1;
int StartX = (int)(ScreenX0 / Scale) - 1;
int EndY = (int)(ScreenY1 / Scale) + 1;
int EndX = (int)(ScreenX1 / Scale) + 1;
// adjust the texture shift according to mipmap level
float TexSize = 1024.0f;
float Frac = (1.25f / TexSize) * (1 / FinalTilesetScale);
float Nudge = (0.5f / TexSize) * (1 / FinalTilesetScale);
for(int y = StartY; y < EndY; y++)
{
for(int x = StartX; x < EndX; x++)
{
unsigned char Index = (x >= RectX && x < RectX + RectW && y >= RectY && y < RectY + RectH) ? IndexIn : IndexOut;
if(Index)
{
bool Render = false;
if(RenderFlags & LAYERRENDERFLAG_TRANSPARENT)
Render = true;
if(Render)
{
int tx = Index % 16;
int ty = Index / 16;
int Px0 = tx * (1024 / 16);
int Py0 = ty * (1024 / 16);
int Px1 = Px0 + (1024 / 16) - 1;
int Py1 = Py0 + (1024 / 16) - 1;
float x0 = Nudge + Px0 / TexSize + Frac;
float y0 = Nudge + Py0 / TexSize + Frac;
float x1 = Nudge + Px1 / TexSize - Frac;
float y1 = Nudge + Py0 / TexSize + Frac;
float x2 = Nudge + Px1 / TexSize - Frac;
float y2 = Nudge + Py1 / TexSize - Frac;
float x3 = Nudge + Px0 / TexSize + Frac;
float y3 = Nudge + Py1 / TexSize - Frac;
Graphics()->QuadsSetSubsetFree(x0, y0, x1, y1, x2, y2, x3, y3);
IGraphics::CQuadItem QuadItem(x * Scale, y * Scale, Scale, Scale);
Graphics()->QuadsDrawTL(&QuadItem, 1);
}
}
}
}
Graphics()->QuadsEnd();
Graphics()->MapScreen(ScreenX0, ScreenY0, ScreenX1, ScreenY1);
}
void CRenderTools::RenderTilemap(CTile *pTiles, int w, int h, float Scale, ColorRGBA Color, int RenderFlags,
ENVELOPE_EVAL pfnEval, void *pUser, int ColorEnv, int ColorEnvOffset)
{
float ScreenX0, ScreenY0, ScreenX1, ScreenY1;
Graphics()->GetScreen(&ScreenX0, &ScreenY0, &ScreenX1, &ScreenY1);
// calculate the final pixelsize for the tiles
float TilePixelSize = 1024 / 32.0f;
float FinalTileSize = Scale / (ScreenX1 - ScreenX0) * Graphics()->ScreenWidth();
float FinalTilesetScale = FinalTileSize / TilePixelSize;
float r = 1, g = 1, b = 1, a = 1;
if(ColorEnv >= 0)
{
float aChannels[4];
pfnEval(ColorEnvOffset, ColorEnv, aChannels, pUser);
r = aChannels[0];
g = aChannels[1];
b = aChannels[2];
a = aChannels[3];
}
if(Graphics()->IsTileBufferingEnabled())
Graphics()->QuadsTex3DBegin();
else
Graphics()->QuadsBegin();
Graphics()->SetColor(Color.r * r, Color.g * g, Color.b * b, Color.a * a);
int StartY = (int)(ScreenY0 / Scale) - 1;
int StartX = (int)(ScreenX0 / Scale) - 1;
int EndY = (int)(ScreenY1 / Scale) + 1;
int EndX = (int)(ScreenX1 / Scale) + 1;
// adjust the texture shift according to mipmap level
float TexSize = 1024.0f;
float Frac = (1.25f / TexSize) * (1 / FinalTilesetScale);
float Nudge = (0.5f / TexSize) * (1 / FinalTilesetScale);
for(int y = StartY; y < EndY; y++)
{
for(int x = StartX; x < EndX; x++)
{
int mx = x;
int my = y;
if(RenderFlags & TILERENDERFLAG_EXTEND)
{
if(mx < 0)
mx = 0;
if(mx >= w)
mx = w - 1;
if(my < 0)
my = 0;
if(my >= h)
my = h - 1;
}
else
{
if(mx < 0)
continue; // mx = 0;
if(mx >= w)
continue; // mx = w-1;
if(my < 0)
continue; // my = 0;
if(my >= h)
continue; // my = h-1;
}
int c = mx + my * w;
unsigned char Index = pTiles[c].m_Index;
if(Index)
{
unsigned char Flags = pTiles[c].m_Flags;
bool Render = false;
if(Flags & TILEFLAG_OPAQUE && Color.a * a > 254.0f / 255.0f)
{
if(RenderFlags & LAYERRENDERFLAG_OPAQUE)
Render = true;
}
else
{
if(RenderFlags & LAYERRENDERFLAG_TRANSPARENT)
Render = true;
}
if(Render)
{
int tx = Index % 16;
int ty = Index / 16;
int Px0 = tx * (1024 / 16);
int Py0 = ty * (1024 / 16);
int Px1 = Px0 + (1024 / 16) - 1;
int Py1 = Py0 + (1024 / 16) - 1;
float x0 = Nudge + Px0 / TexSize + Frac;
float y0 = Nudge + Py0 / TexSize + Frac;
float x1 = Nudge + Px1 / TexSize - Frac;
float y1 = Nudge + Py0 / TexSize + Frac;
float x2 = Nudge + Px1 / TexSize - Frac;
float y2 = Nudge + Py1 / TexSize - Frac;
float x3 = Nudge + Px0 / TexSize + Frac;
float y3 = Nudge + Py1 / TexSize - Frac;
if(Graphics()->IsTileBufferingEnabled())
{
x0 = 0;
y0 = 0;
x1 = x0 + 1;
y1 = y0;
x2 = x0 + 1;
y2 = y0 + 1;
x3 = x0;
y3 = y0 + 1;
}
if(Flags & TILEFLAG_VFLIP)
{
x0 = x2;
x1 = x3;
x2 = x3;
x3 = x0;
}
if(Flags & TILEFLAG_HFLIP)
{
y0 = y3;
y2 = y1;
y3 = y1;
y1 = y0;
}
if(Flags & TILEFLAG_ROTATE)
{
float Tmp = x0;
x0 = x3;
x3 = x2;
x2 = x1;
x1 = Tmp;
Tmp = y0;
y0 = y3;
y3 = y2;
y2 = y1;
y1 = Tmp;
}
if(Graphics()->IsTileBufferingEnabled())
{
Graphics()->QuadsSetSubsetFree(x0, y0, x1, y1, x2, y2, x3, y3, Index);
IGraphics::CQuadItem QuadItem(x * Scale, y * Scale, Scale, Scale);
Graphics()->QuadsTex3DDrawTL(&QuadItem, 1);
}
else
{
Graphics()->QuadsSetSubsetFree(x0, y0, x1, y1, x2, y2, x3, y3);
IGraphics::CQuadItem QuadItem(x * Scale, y * Scale, Scale, Scale);
Graphics()->QuadsDrawTL(&QuadItem, 1);
}
}
}
x += pTiles[c].m_Skip;
}
}
if(Graphics()->IsTileBufferingEnabled())
Graphics()->QuadsTex3DEnd();
else
Graphics()->QuadsEnd();
Graphics()->MapScreen(ScreenX0, ScreenY0, ScreenX1, ScreenY1);
}
void CRenderTools::RenderTeleOverlay(CTeleTile *pTele, int w, int h, float Scale, float Alpha)
{
if(!g_Config.m_ClTextEntities)
return;
float ScreenX0, ScreenY0, ScreenX1, ScreenY1;
Graphics()->GetScreen(&ScreenX0, &ScreenY0, &ScreenX1, &ScreenY1);
int StartY = (int)(ScreenY0 / Scale) - 1;
int StartX = (int)(ScreenX0 / Scale) - 1;
int EndY = (int)(ScreenY1 / Scale) + 1;
int EndX = (int)(ScreenX1 / Scale) + 1;
if(EndX - StartX > Graphics()->ScreenWidth() / g_Config.m_GfxTextOverlay || EndY - StartY > Graphics()->ScreenHeight() / g_Config.m_GfxTextOverlay)
return; // its useless to render text at this distance
float Size = g_Config.m_ClTextEntitiesSize / 100.f;
float ToCenterOffset = (1 - Size) / 2.f;
for(int y = StartY; y < EndY; y++)
for(int x = StartX; x < EndX; x++)
{
int mx = x;
int my = y;
if(mx < 0)
continue; // mx = 0;
if(mx >= w)
continue; // mx = w-1;
if(my < 0)
continue; // my = 0;
if(my >= h)
continue; // my = h-1;
int c = mx + my * w;
unsigned char Index = pTele[c].m_Number;
if(Index && pTele[c].m_Type != TILE_TELECHECKIN && pTele[c].m_Type != TILE_TELECHECKINEVIL)
{
char aBuf[16];
str_format(aBuf, sizeof(aBuf), "%d", Index);
TextRender()->TextColor(1.0f, 1.0f, 1.0f, Alpha);
TextRender()->Text(0, mx * Scale - 3.f, (my + ToCenterOffset) * Scale, Size * Scale, aBuf, -1.0f);
TextRender()->TextColor(1.0f, 1.0f, 1.0f, 1.0f);
}
}
Graphics()->MapScreen(ScreenX0, ScreenY0, ScreenX1, ScreenY1);
}
void CRenderTools::RenderSpeedupOverlay(CSpeedupTile *pSpeedup, int w, int h, float Scale, float Alpha)
{
float ScreenX0, ScreenY0, ScreenX1, ScreenY1;
Graphics()->GetScreen(&ScreenX0, &ScreenY0, &ScreenX1, &ScreenY1);
int StartY = (int)(ScreenY0 / Scale) - 1;
int StartX = (int)(ScreenX0 / Scale) - 1;
int EndY = (int)(ScreenY1 / Scale) + 1;
int EndX = (int)(ScreenX1 / Scale) + 1;
if(EndX - StartX > Graphics()->ScreenWidth() / g_Config.m_GfxTextOverlay || EndY - StartY > Graphics()->ScreenHeight() / g_Config.m_GfxTextOverlay)
return; // its useless to render text at this distance
float Size = g_Config.m_ClTextEntitiesSize / 100.f;
float ToCenterOffset = (1 - Size) / 2.f;
for(int y = StartY; y < EndY; y++)
for(int x = StartX; x < EndX; x++)
{
int mx = x;
int my = y;
if(mx < 0)
continue; // mx = 0;
if(mx >= w)
continue; // mx = w-1;
if(my < 0)
continue; // my = 0;
if(my >= h)
continue; // my = h-1;
int c = mx + my * w;
int Force = (int)pSpeedup[c].m_Force;
int MaxSpeed = (int)pSpeedup[c].m_MaxSpeed;
if(Force)
{
// draw arrow
Graphics()->TextureSet(g_pData->m_aImages[IMAGE_SPEEDUP_ARROW].m_Id);
Graphics()->QuadsBegin();
Graphics()->SetColor(255.0f, 255.0f, 255.0f, Alpha);
SelectSprite(SPRITE_SPEEDUP_ARROW);
Graphics()->QuadsSetRotation(pSpeedup[c].m_Angle * (3.14159265f / 180.0f));
DrawSprite(mx * Scale + 16, my * Scale + 16, 35.0f);
Graphics()->QuadsEnd();
if(g_Config.m_ClTextEntities)
{
// draw force
char aBuf[16];
str_format(aBuf, sizeof(aBuf), "%d", Force);
TextRender()->TextColor(1.0f, 1.0f, 1.0f, Alpha);
TextRender()->Text(0, mx * Scale, (my + 0.5f + ToCenterOffset / 2) * Scale, Size * Scale / 2.f, aBuf, -1.0f);
TextRender()->TextColor(1.0f, 1.0f, 1.0f, 1.0f);
if(MaxSpeed)
{
str_format(aBuf, sizeof(aBuf), "%d", MaxSpeed);
TextRender()->TextColor(1.0f, 1.0f, 1.0f, Alpha);
TextRender()->Text(0, mx * Scale, (my + ToCenterOffset / 2) * Scale, Size * Scale / 2.f, aBuf, -1.0f);
TextRender()->TextColor(1.0f, 1.0f, 1.0f, 1.0f);
}
}
}
}
Graphics()->MapScreen(ScreenX0, ScreenY0, ScreenX1, ScreenY1);
}
void CRenderTools::RenderSwitchOverlay(CSwitchTile *pSwitch, int w, int h, float Scale, float Alpha)
{
if(!g_Config.m_ClTextEntities)
return;
float ScreenX0, ScreenY0, ScreenX1, ScreenY1;
Graphics()->GetScreen(&ScreenX0, &ScreenY0, &ScreenX1, &ScreenY1);
int StartY = (int)(ScreenY0 / Scale) - 1;
int StartX = (int)(ScreenX0 / Scale) - 1;
int EndY = (int)(ScreenY1 / Scale) + 1;
int EndX = (int)(ScreenX1 / Scale) + 1;
if(EndX - StartX > Graphics()->ScreenWidth() / g_Config.m_GfxTextOverlay || EndY - StartY > Graphics()->ScreenHeight() / g_Config.m_GfxTextOverlay)
return; // its useless to render text at this distance
float Size = g_Config.m_ClTextEntitiesSize / 100.f;
float ToCenterOffset = (1 - Size) / 2.f;
for(int y = StartY; y < EndY; y++)
for(int x = StartX; x < EndX; x++)
{
int mx = x;
int my = y;
if(mx < 0)
continue; // mx = 0;
if(mx >= w)
continue; // mx = w-1;
if(my < 0)
continue; // my = 0;
if(my >= h)
continue; // my = h-1;
int c = mx + my * w;
unsigned char Index = pSwitch[c].m_Number;
if(Index)
{
char aBuf[16];
str_format(aBuf, sizeof(aBuf), "%d", Index);
TextRender()->TextColor(1.0f, 1.0f, 1.0f, Alpha);
TextRender()->Text(0, mx * Scale, (my + ToCenterOffset / 2) * Scale, Size * Scale / 2.f, aBuf, -1.0f);
TextRender()->TextColor(1.0f, 1.0f, 1.0f, 1.0f);
}
unsigned char Delay = pSwitch[c].m_Delay;
if(Delay)
{
char aBuf[16];
str_format(aBuf, sizeof(aBuf), "%d", Delay);
TextRender()->TextColor(1.0f, 1.0f, 1.0f, Alpha);
TextRender()->Text(0, mx * Scale, (my + 0.5f + ToCenterOffset / 2) * Scale, Size * Scale / 2.f, aBuf, -1.0f);
TextRender()->TextColor(1.0f, 1.0f, 1.0f, 1.0f);
}
}
Graphics()->MapScreen(ScreenX0, ScreenY0, ScreenX1, ScreenY1);
}
void CRenderTools::RenderTuneOverlay(CTuneTile *pTune, int w, int h, float Scale, float Alpha)
{
if(!g_Config.m_ClTextEntities)
return;
float ScreenX0, ScreenY0, ScreenX1, ScreenY1;
Graphics()->GetScreen(&ScreenX0, &ScreenY0, &ScreenX1, &ScreenY1);
int StartY = (int)(ScreenY0 / Scale) - 1;
int StartX = (int)(ScreenX0 / Scale) - 1;
int EndY = (int)(ScreenY1 / Scale) + 1;
int EndX = (int)(ScreenX1 / Scale) + 1;
if(EndX - StartX > Graphics()->ScreenWidth() / g_Config.m_GfxTextOverlay || EndY - StartY > Graphics()->ScreenHeight() / g_Config.m_GfxTextOverlay)
return; // its useless to render text at this distance
float Size = g_Config.m_ClTextEntitiesSize / 100.f;
for(int y = StartY; y < EndY; y++)
for(int x = StartX; x < EndX; x++)
{
int mx = x;
int my = y;
if(mx < 0)
continue; // mx = 0;
if(mx >= w)
continue; // mx = w-1;
if(my < 0)
continue; // my = 0;
if(my >= h)
continue; // my = h-1;
int c = mx + my * w;
unsigned char Index = pTune[c].m_Number;
if(Index)
{
char aBuf[16];
str_format(aBuf, sizeof(aBuf), "%d", Index);
TextRender()->TextColor(1.0f, 1.0f, 1.0f, Alpha);
TextRender()->Text(0, mx * Scale + 11.f, my * Scale + 6.f, Size * Scale / 1.5f - 5.f, aBuf, -1.0f); // numbers shouldn't be too big and in the center of the tile
TextRender()->TextColor(1.0f, 1.0f, 1.0f, 1.0f);
}
}
Graphics()->MapScreen(ScreenX0, ScreenY0, ScreenX1, ScreenY1);
}
void CRenderTools::RenderTelemap(CTeleTile *pTele, int w, int h, float Scale, ColorRGBA Color, int RenderFlags)
{
float ScreenX0, ScreenY0, ScreenX1, ScreenY1;
Graphics()->GetScreen(&ScreenX0, &ScreenY0, &ScreenX1, &ScreenY1);
// calculate the final pixelsize for the tiles
float TilePixelSize = 1024 / 32.0f;
float FinalTileSize = Scale / (ScreenX1 - ScreenX0) * Graphics()->ScreenWidth();
float FinalTilesetScale = FinalTileSize / TilePixelSize;
Graphics()->QuadsBegin();
Graphics()->SetColor(Color);
int StartY = (int)(ScreenY0 / Scale) - 1;
int StartX = (int)(ScreenX0 / Scale) - 1;
int EndY = (int)(ScreenY1 / Scale) + 1;
int EndX = (int)(ScreenX1 / Scale) + 1;
// adjust the texture shift according to mipmap level
float TexSize = 1024.0f;
float Frac = (1.25f / TexSize) * (1 / FinalTilesetScale);
float Nudge = (0.5f / TexSize) * (1 / FinalTilesetScale);
for(int y = StartY; y < EndY; y++)
for(int x = StartX; x < EndX; x++)
{
int mx = x;
int my = y;
if(RenderFlags & TILERENDERFLAG_EXTEND)
{
if(mx < 0)
mx = 0;
if(mx >= w)
mx = w - 1;
if(my < 0)
my = 0;
if(my >= h)
my = h - 1;
}
else
{
if(mx < 0)
continue; // mx = 0;
if(mx >= w)
continue; // mx = w-1;
if(my < 0)
continue; // my = 0;
if(my >= h)
continue; // my = h-1;
}
int c = mx + my * w;
unsigned char Index = pTele[c].m_Type;
if(Index)
{
bool Render = false;
if(RenderFlags & LAYERRENDERFLAG_TRANSPARENT)
Render = true;
if(Render)
{
int tx = Index % 16;
int ty = Index / 16;
int Px0 = tx * (1024 / 16);
int Py0 = ty * (1024 / 16);
int Px1 = Px0 + (1024 / 16) - 1;
int Py1 = Py0 + (1024 / 16) - 1;
float x0 = Nudge + Px0 / TexSize + Frac;
float y0 = Nudge + Py0 / TexSize + Frac;
float x1 = Nudge + Px1 / TexSize - Frac;
float y1 = Nudge + Py0 / TexSize + Frac;
float x2 = Nudge + Px1 / TexSize - Frac;
float y2 = Nudge + Py1 / TexSize - Frac;
float x3 = Nudge + Px0 / TexSize + Frac;
float y3 = Nudge + Py1 / TexSize - Frac;
Graphics()->QuadsSetSubsetFree(x0, y0, x1, y1, x2, y2, x3, y3);
IGraphics::CQuadItem QuadItem(x * Scale, y * Scale, Scale, Scale);
Graphics()->QuadsDrawTL(&QuadItem, 1);
}
}
}
Graphics()->QuadsEnd();
Graphics()->MapScreen(ScreenX0, ScreenY0, ScreenX1, ScreenY1);
}
void CRenderTools::RenderSpeedupmap(CSpeedupTile *pSpeedupTile, int w, int h, float Scale, ColorRGBA Color, int RenderFlags)
{
//Graphics()->TextureSet(img_get(tmap->image));
float ScreenX0, ScreenY0, ScreenX1, ScreenY1;
Graphics()->GetScreen(&ScreenX0, &ScreenY0, &ScreenX1, &ScreenY1);
//Graphics()->MapScreen(screen_x0-50, screen_y0-50, screen_x1+50, screen_y1+50);
// calculate the final pixelsize for the tiles
float TilePixelSize = 1024 / 32.0f;
float FinalTileSize = Scale / (ScreenX1 - ScreenX0) * Graphics()->ScreenWidth();
float FinalTilesetScale = FinalTileSize / TilePixelSize;
Graphics()->QuadsBegin();
Graphics()->SetColor(Color);
int StartY = (int)(ScreenY0 / Scale) - 1;
int StartX = (int)(ScreenX0 / Scale) - 1;
int EndY = (int)(ScreenY1 / Scale) + 1;
int EndX = (int)(ScreenX1 / Scale) + 1;
// adjust the texture shift according to mipmap level
float TexSize = 1024.0f;
float Frac = (1.25f / TexSize) * (1 / FinalTilesetScale);
float Nudge = (0.5f / TexSize) * (1 / FinalTilesetScale);
for(int y = StartY; y < EndY; y++)
for(int x = StartX; x < EndX; x++)
{
int mx = x;
int my = y;
if(RenderFlags & TILERENDERFLAG_EXTEND)
{
if(mx < 0)
mx = 0;
if(mx >= w)
mx = w - 1;
if(my < 0)
my = 0;
if(my >= h)
my = h - 1;
}
else
{
if(mx < 0)
continue; // mx = 0;
if(mx >= w)
continue; // mx = w-1;
if(my < 0)
continue; // my = 0;
if(my >= h)
continue; // my = h-1;
}
int c = mx + my * w;
unsigned char Index = pSpeedupTile[c].m_Type;
if(Index)
{
bool Render = false;
if(RenderFlags & LAYERRENDERFLAG_TRANSPARENT)
Render = true;
if(Render)
{
int tx = Index % 16;
int ty = Index / 16;
int Px0 = tx * (1024 / 16);
int Py0 = ty * (1024 / 16);
int Px1 = Px0 + (1024 / 16) - 1;
int Py1 = Py0 + (1024 / 16) - 1;
float x0 = Nudge + Px0 / TexSize + Frac;
float y0 = Nudge + Py0 / TexSize + Frac;
float x1 = Nudge + Px1 / TexSize - Frac;
float y1 = Nudge + Py0 / TexSize + Frac;
float x2 = Nudge + Px1 / TexSize - Frac;
float y2 = Nudge + Py1 / TexSize - Frac;
float x3 = Nudge + Px0 / TexSize + Frac;
float y3 = Nudge + Py1 / TexSize - Frac;
Graphics()->QuadsSetSubsetFree(x0, y0, x1, y1, x2, y2, x3, y3);
IGraphics::CQuadItem QuadItem(x * Scale, y * Scale, Scale, Scale);
Graphics()->QuadsDrawTL(&QuadItem, 1);
}
}
}
Graphics()->QuadsEnd();
Graphics()->MapScreen(ScreenX0, ScreenY0, ScreenX1, ScreenY1);
}
void CRenderTools::RenderSwitchmap(CSwitchTile *pSwitchTile, int w, int h, float Scale, ColorRGBA Color, int RenderFlags)
{
//Graphics()->TextureSet(img_get(tmap->image));
float ScreenX0, ScreenY0, ScreenX1, ScreenY1;
Graphics()->GetScreen(&ScreenX0, &ScreenY0, &ScreenX1, &ScreenY1);
//Graphics()->MapScreen(screen_x0-50, screen_y0-50, screen_x1+50, screen_y1+50);
// calculate the final pixelsize for the tiles
float TilePixelSize = 1024 / 32.0f;
float FinalTileSize = Scale / (ScreenX1 - ScreenX0) * Graphics()->ScreenWidth();
float FinalTilesetScale = FinalTileSize / TilePixelSize;
Graphics()->QuadsBegin();
Graphics()->SetColor(Color);
int StartY = (int)(ScreenY0 / Scale) - 1;
int StartX = (int)(ScreenX0 / Scale) - 1;
int EndY = (int)(ScreenY1 / Scale) + 1;
int EndX = (int)(ScreenX1 / Scale) + 1;
// adjust the texture shift according to mipmap level
float TexSize = 1024.0f;
float Frac = (1.25f / TexSize) * (1 / FinalTilesetScale);
float Nudge = (0.5f / TexSize) * (1 / FinalTilesetScale);
for(int y = StartY; y < EndY; y++)
for(int x = StartX; x < EndX; x++)
{
int mx = x;
int my = y;
if(RenderFlags & TILERENDERFLAG_EXTEND)
{
if(mx < 0)
mx = 0;
if(mx >= w)
mx = w - 1;
if(my < 0)
my = 0;
if(my >= h)
my = h - 1;
}
else
{
if(mx < 0)
continue; // mx = 0;
if(mx >= w)
continue; // mx = w-1;
if(my < 0)
continue; // my = 0;
if(my >= h)
continue; // my = h-1;
}
int c = mx + my * w;
unsigned char Index = pSwitchTile[c].m_Type;
if(Index)
{
if(Index == TILE_SWITCHTIMEDOPEN)
Index = 8;
unsigned char Flags = pSwitchTile[c].m_Flags;
bool Render = false;
if(Flags & TILEFLAG_OPAQUE)
{
if(RenderFlags & LAYERRENDERFLAG_OPAQUE)
Render = true;
}
else
{
if(RenderFlags & LAYERRENDERFLAG_TRANSPARENT)
Render = true;
}
if(Render)
{
int tx = Index % 16;
int ty = Index / 16;
int Px0 = tx * (1024 / 16);
int Py0 = ty * (1024 / 16);
int Px1 = Px0 + (1024 / 16) - 1;
int Py1 = Py0 + (1024 / 16) - 1;
float x0 = Nudge + Px0 / TexSize + Frac;
float y0 = Nudge + Py0 / TexSize + Frac;
float x1 = Nudge + Px1 / TexSize - Frac;
float y1 = Nudge + Py0 / TexSize + Frac;
float x2 = Nudge + Px1 / TexSize - Frac;
float y2 = Nudge + Py1 / TexSize - Frac;
float x3 = Nudge + Px0 / TexSize + Frac;
float y3 = Nudge + Py1 / TexSize - Frac;
if(Flags & TILEFLAG_VFLIP)
{
x0 = x2;
x1 = x3;
x2 = x3;
x3 = x0;
}
if(Flags & TILEFLAG_HFLIP)
{
y0 = y3;
y2 = y1;
y3 = y1;
y1 = y0;
}
if(Flags & TILEFLAG_ROTATE)
{
float Tmp = x0;
x0 = x3;
x3 = x2;
x2 = x1;
x1 = Tmp;
Tmp = y0;
y0 = y3;
y3 = y2;
y2 = y1;
y1 = Tmp;
}
Graphics()->QuadsSetSubsetFree(x0, y0, x1, y1, x2, y2, x3, y3);
IGraphics::CQuadItem QuadItem(x * Scale, y * Scale, Scale, Scale);
Graphics()->QuadsDrawTL(&QuadItem, 1);
}
}
}
Graphics()->QuadsEnd();
Graphics()->MapScreen(ScreenX0, ScreenY0, ScreenX1, ScreenY1);
}
void CRenderTools::RenderTunemap(CTuneTile *pTune, int w, int h, float Scale, ColorRGBA Color, int RenderFlags)
{
float ScreenX0, ScreenY0, ScreenX1, ScreenY1;
Graphics()->GetScreen(&ScreenX0, &ScreenY0, &ScreenX1, &ScreenY1);
// calculate the final pixelsize for the tiles
float TilePixelSize = 1024 / 32.0f;
float FinalTileSize = Scale / (ScreenX1 - ScreenX0) * Graphics()->ScreenWidth();
float FinalTilesetScale = FinalTileSize / TilePixelSize;
Graphics()->QuadsBegin();
Graphics()->SetColor(Color);
int StartY = (int)(ScreenY0 / Scale) - 1;
int StartX = (int)(ScreenX0 / Scale) - 1;
int EndY = (int)(ScreenY1 / Scale) + 1;
int EndX = (int)(ScreenX1 / Scale) + 1;
// adjust the texture shift according to mipmap level
float TexSize = 1024.0f;
float Frac = (1.25f / TexSize) * (1 / FinalTilesetScale);
float Nudge = (0.5f / TexSize) * (1 / FinalTilesetScale);
for(int y = StartY; y < EndY; y++)
for(int x = StartX; x < EndX; x++)
{
int mx = x;
int my = y;
if(RenderFlags & TILERENDERFLAG_EXTEND)
{
if(mx < 0)
mx = 0;
if(mx >= w)
mx = w - 1;
if(my < 0)
my = 0;
if(my >= h)
my = h - 1;
}
else
{
if(mx < 0)
continue; // mx = 0;
if(mx >= w)
continue; // mx = w-1;
if(my < 0)
continue; // my = 0;
if(my >= h)
continue; // my = h-1;
}
int c = mx + my * w;
unsigned char Index = pTune[c].m_Type;
if(Index)
{
bool Render = false;
if(RenderFlags & LAYERRENDERFLAG_TRANSPARENT)
Render = true;
if(Render)
{
int tx = Index % 16;
int ty = Index / 16;
int Px0 = tx * (1024 / 16);
int Py0 = ty * (1024 / 16);
int Px1 = Px0 + (1024 / 16) - 1;
int Py1 = Py0 + (1024 / 16) - 1;
float x0 = Nudge + Px0 / TexSize + Frac;
float y0 = Nudge + Py0 / TexSize + Frac;
float x1 = Nudge + Px1 / TexSize - Frac;
float y1 = Nudge + Py0 / TexSize + Frac;
float x2 = Nudge + Px1 / TexSize - Frac;
float y2 = Nudge + Py1 / TexSize - Frac;
float x3 = Nudge + Px0 / TexSize + Frac;
float y3 = Nudge + Py1 / TexSize - Frac;
Graphics()->QuadsSetSubsetFree(x0, y0, x1, y1, x2, y2, x3, y3);
IGraphics::CQuadItem QuadItem(x * Scale, y * Scale, Scale, Scale);
Graphics()->QuadsDrawTL(&QuadItem, 1);
}
}
}
Graphics()->QuadsEnd();
Graphics()->MapScreen(ScreenX0, ScreenY0, ScreenX1, ScreenY1);
}