/* (c) Magnus Auvinen. See licence.txt in the root of the distribution for more information. */ /* If you are missing that file, acquire a complete release at teeworlds.com. */ #include "huffman.h" #include struct CHuffmanConstructNode { unsigned short m_NodeId; int m_Frequency; }; void CHuffman::Setbits_r(CNode *pNode, int Bits, unsigned Depth) { if(pNode->m_aLeafs[1] != 0xffff) Setbits_r(&m_aNodes[pNode->m_aLeafs[1]], Bits | (1 << Depth), Depth + 1); if(pNode->m_aLeafs[0] != 0xffff) Setbits_r(&m_aNodes[pNode->m_aLeafs[0]], Bits, Depth + 1); if(pNode->m_NumBits) { pNode->m_Bits = Bits; pNode->m_NumBits = Depth; } } // TODO: this should be something faster, but it's enough for now static void BubbleSort(CHuffmanConstructNode **ppList, int Size) { int Changed = 1; CHuffmanConstructNode *pTemp; while(Changed) { Changed = 0; for(int i = 0; i < Size - 1; i++) { if(ppList[i]->m_Frequency < ppList[i + 1]->m_Frequency) { pTemp = ppList[i]; ppList[i] = ppList[i + 1]; ppList[i + 1] = pTemp; Changed = 1; } } Size--; } } void CHuffman::ConstructTree(const unsigned *pFrequencies) { CHuffmanConstructNode aNodesLeftStorage[HUFFMAN_MAX_SYMBOLS]; CHuffmanConstructNode *apNodesLeft[HUFFMAN_MAX_SYMBOLS]; int NumNodesLeft = HUFFMAN_MAX_SYMBOLS; // add the symbols for(int i = 0; i < HUFFMAN_MAX_SYMBOLS; i++) { m_aNodes[i].m_NumBits = 0xFFFFFFFF; m_aNodes[i].m_Symbol = i; m_aNodes[i].m_aLeafs[0] = 0xffff; m_aNodes[i].m_aLeafs[1] = 0xffff; if(i == HUFFMAN_EOF_SYMBOL) aNodesLeftStorage[i].m_Frequency = 1; else aNodesLeftStorage[i].m_Frequency = pFrequencies[i]; aNodesLeftStorage[i].m_NodeId = i; apNodesLeft[i] = &aNodesLeftStorage[i]; } m_NumNodes = HUFFMAN_MAX_SYMBOLS; // construct the table while(NumNodesLeft > 1) { // we can't rely on stdlib's qsort for this, it can generate different results on different implementations BubbleSort(apNodesLeft, NumNodesLeft); m_aNodes[m_NumNodes].m_NumBits = 0; m_aNodes[m_NumNodes].m_aLeafs[0] = apNodesLeft[NumNodesLeft - 1]->m_NodeId; m_aNodes[m_NumNodes].m_aLeafs[1] = apNodesLeft[NumNodesLeft - 2]->m_NodeId; apNodesLeft[NumNodesLeft - 2]->m_NodeId = m_NumNodes; apNodesLeft[NumNodesLeft - 2]->m_Frequency = apNodesLeft[NumNodesLeft - 1]->m_Frequency + apNodesLeft[NumNodesLeft - 2]->m_Frequency; m_NumNodes++; NumNodesLeft--; } // set start node m_pStartNode = &m_aNodes[m_NumNodes - 1]; // build symbol bits Setbits_r(m_pStartNode, 0, 0); } void CHuffman::Init(const unsigned *pFrequencies) { int i; // make sure to cleanout every thing mem_zero(this, sizeof(*this)); // construct the tree ConstructTree(pFrequencies); // build decode LUT for(i = 0; i < HUFFMAN_LUTSIZE; i++) { unsigned Bits = i; int k; CNode *pNode = m_pStartNode; for(k = 0; k < HUFFMAN_LUTBITS; k++) { pNode = &m_aNodes[pNode->m_aLeafs[Bits & 1]]; Bits >>= 1; if(!pNode) break; if(pNode->m_NumBits) { m_apDecodeLut[i] = pNode; break; } } if(k == HUFFMAN_LUTBITS) m_apDecodeLut[i] = pNode; } } //*************************************************************** int CHuffman::Compress(const void *pInput, int InputSize, void *pOutput, int OutputSize) { // this macro loads a symbol for a byte into bits and bitcount #define HUFFMAN_MACRO_LOADSYMBOL(Sym) \ Bits |= m_aNodes[Sym].m_Bits << Bitcount; \ Bitcount += m_aNodes[Sym].m_NumBits; // this macro writes the symbol stored in bits and bitcount to the dst pointer #define HUFFMAN_MACRO_WRITE() \ while(Bitcount >= 8) \ { \ *pDst++ = (unsigned char)(Bits & 0xff); \ if(pDst == pDstEnd) \ return -1; \ Bits >>= 8; \ Bitcount -= 8; \ } // setup buffer pointers const unsigned char *pSrc = (const unsigned char *)pInput; const unsigned char *pSrcEnd = pSrc + InputSize; unsigned char *pDst = (unsigned char *)pOutput; unsigned char *pDstEnd = pDst + OutputSize; // symbol variables unsigned Bits = 0; unsigned Bitcount = 0; // make sure that we have data that we want to compress if(InputSize) { // {A} load the first symbol int Symbol = *pSrc++; while(pSrc != pSrcEnd) { // {B} load the symbol HUFFMAN_MACRO_LOADSYMBOL(Symbol) // {C} fetch next symbol, this is done here because it will reduce dependency in the code Symbol = *pSrc++; // {B} write the symbol loaded at HUFFMAN_MACRO_WRITE() } // write the last symbol loaded from {C} or {A} in the case of only 1 byte input buffer HUFFMAN_MACRO_LOADSYMBOL(Symbol) HUFFMAN_MACRO_WRITE() } // write EOF symbol HUFFMAN_MACRO_LOADSYMBOL(HUFFMAN_EOF_SYMBOL) HUFFMAN_MACRO_WRITE() // write out the last bits *pDst++ = Bits; // return the size of the output return (int)(pDst - (const unsigned char *)pOutput); // remove macros #undef HUFFMAN_MACRO_LOADSYMBOL #undef HUFFMAN_MACRO_WRITE } //*************************************************************** int CHuffman::Decompress(const void *pInput, int InputSize, void *pOutput, int OutputSize) { // setup buffer pointers unsigned char *pDst = (unsigned char *)pOutput; unsigned char *pSrc = (unsigned char *)pInput; unsigned char *pDstEnd = pDst + OutputSize; unsigned char *pSrcEnd = pSrc + InputSize; unsigned Bits = 0; unsigned Bitcount = 0; CNode *pEof = &m_aNodes[HUFFMAN_EOF_SYMBOL]; CNode *pNode = 0; while(1) { // {A} try to load a node now, this will reduce dependency at location {D} pNode = 0; if(Bitcount >= HUFFMAN_LUTBITS) pNode = m_apDecodeLut[Bits & HUFFMAN_LUTMASK]; // {B} fill with new bits while(Bitcount < 24 && pSrc != pSrcEnd) { Bits |= (*pSrc++) << Bitcount; Bitcount += 8; } // {C} load symbol now if we didn't that earlier at location {A} if(!pNode) pNode = m_apDecodeLut[Bits & HUFFMAN_LUTMASK]; if(!pNode) return -1; // {D} check if we hit a symbol already if(pNode->m_NumBits) { // remove the bits for that symbol Bits >>= pNode->m_NumBits; Bitcount -= pNode->m_NumBits; } else { // remove the bits that the lut checked up for us Bits >>= HUFFMAN_LUTBITS; Bitcount -= HUFFMAN_LUTBITS; // walk the tree bit by bit while(1) { // traverse tree pNode = &m_aNodes[pNode->m_aLeafs[Bits & 1]]; // remove bit Bitcount--; Bits >>= 1; // check if we hit a symbol if(pNode->m_NumBits) break; // no more bits, decoding error if(Bitcount == 0) return -1; } } // check for eof if(pNode == pEof) break; // output character if(pDst == pDstEnd) return -1; *pDst++ = pNode->m_Symbol; } // return the size of the decompressed buffer return (int)(pDst - (const unsigned char *)pOutput); }