// SHA-256. Adapted from https://github.com/kalven/sha-2, which was adapted // from LibTomCrypt. This code is Public Domain. #if !defined(CONF_OPENSSL) #include "hash_ctxt.h" #include #include #include typedef uint32_t u32; typedef uint64_t u64; typedef SHA256_CTX sha256_state; static const u32 K[64] = { 0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL, 0x3956c25bUL, 0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL, 0xd807aa98UL, 0x12835b01UL, 0x243185beUL, 0x550c7dc3UL, 0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL, 0xc19bf174UL, 0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL, 0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL, 0x983e5152UL, 0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL, 0xc6e00bf3UL, 0xd5a79147UL, 0x06ca6351UL, 0x14292967UL, 0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL, 0x53380d13UL, 0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL, 0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL, 0xd192e819UL, 0xd6990624UL, 0xf40e3585UL, 0x106aa070UL, 0x19a4c116UL, 0x1e376c08UL, 0x2748774cUL, 0x34b0bcb5UL, 0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL, 0x682e6ff3UL, 0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL, 0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL}; static u32 minimum(u32 x, u32 y) { return x < y ? x : y; } static u32 load32(const unsigned char *y) { return ((u32)y[0] << 24) | ((u32)y[1] << 16) | ((u32)y[2] << 8) | ((u32)y[3] << 0); } static void store64(u64 x, unsigned char *y) { int i; for(i = 0; i != 8; ++i) y[i] = (x >> ((7 - i) * 8)) & 255; } static void store32(u32 x, unsigned char *y) { int i; for(i = 0; i != 4; ++i) y[i] = (x >> ((3 - i) * 8)) & 255; } static u32 Ch(u32 x, u32 y, u32 z) { return z ^ (x & (y ^ z)); } static u32 Maj(u32 x, u32 y, u32 z) { return ((x | y) & z) | (x & y); } static u32 Rot(u32 x, u32 n) { return (x >> (n & 31)) | (x << (32 - (n & 31))); } static u32 Sh(u32 x, u32 n) { return x >> n; } static u32 Sigma0(u32 x) { return Rot(x, 2) ^ Rot(x, 13) ^ Rot(x, 22); } static u32 Sigma1(u32 x) { return Rot(x, 6) ^ Rot(x, 11) ^ Rot(x, 25); } static u32 Gamma0(u32 x) { return Rot(x, 7) ^ Rot(x, 18) ^ Sh(x, 3); } static u32 Gamma1(u32 x) { return Rot(x, 17) ^ Rot(x, 19) ^ Sh(x, 10); } static void sha_compress(sha256_state *md, const unsigned char *buf) { u32 S[8], W[64], t0, t1, t; int i; // Copy state into S for(i = 0; i < 8; i++) S[i] = md->state[i]; // Copy the state into 512-bits into W[0..15] for(i = 0; i < 16; i++) W[i] = load32(buf + (4 * i)); // Fill W[16..63] for(i = 16; i < 64; i++) W[i] = Gamma1(W[i - 2]) + W[i - 7] + Gamma0(W[i - 15]) + W[i - 16]; // Compress #define RND(a, b, c, d, e, f, g, h, i) \ { \ t0 = h + Sigma1(e) + Ch(e, f, g) + K[i] + W[i]; \ t1 = Sigma0(a) + Maj(a, b, c); \ d += t0; \ h = t0 + t1; \ } for(i = 0; i < 64; ++i) { RND(S[0], S[1], S[2], S[3], S[4], S[5], S[6], S[7], i); t = S[7]; S[7] = S[6]; S[6] = S[5]; S[5] = S[4]; S[4] = S[3]; S[3] = S[2]; S[2] = S[1]; S[1] = S[0]; S[0] = t; } // Feedback for(i = 0; i < 8; i++) md->state[i] = md->state[i] + S[i]; } // Public interface static void sha_init(sha256_state *md) { md->curlen = 0; md->length = 0; md->state[0] = 0x6A09E667UL; md->state[1] = 0xBB67AE85UL; md->state[2] = 0x3C6EF372UL; md->state[3] = 0xA54FF53AUL; md->state[4] = 0x510E527FUL; md->state[5] = 0x9B05688CUL; md->state[6] = 0x1F83D9ABUL; md->state[7] = 0x5BE0CD19UL; } static void sha_process(sha256_state *md, const void *src, u32 inlen) { const u32 block_size = 64; const unsigned char *in = (const unsigned char *)src; while(inlen > 0) { if(md->curlen == 0 && inlen >= block_size) { sha_compress(md, in); md->length += block_size * 8; in += block_size; inlen -= block_size; } else { u32 n = minimum(inlen, (block_size - md->curlen)); memcpy(md->buf + md->curlen, in, n); md->curlen += n; in += n; inlen -= n; if(md->curlen == block_size) { sha_compress(md, md->buf); md->length += 8 * block_size; md->curlen = 0; } } } } static void sha_done(sha256_state *md, void *out) { int i; // Increase the length of the message md->length += md->curlen * 8; // Append the '1' bit md->buf[md->curlen++] = (unsigned char)0x80; // If the length is currently above 56 bytes we append zeros then compress. // Then we can fall back to padding zeros and length encoding like normal. if(md->curlen > 56) { while(md->curlen < 64) md->buf[md->curlen++] = 0; sha_compress(md, md->buf); md->curlen = 0; } // Pad up to 56 bytes of zeroes while(md->curlen < 56) md->buf[md->curlen++] = 0; // Store length store64(md->length, md->buf + 56); sha_compress(md, md->buf); // Copy output for(i = 0; i < 8; i++) store32(md->state[i], (unsigned char *)out + (4 * i)); } void sha256_init(SHA256_CTX *ctxt) { sha_init(ctxt); } void sha256_update(SHA256_CTX *ctxt, const void *data, size_t data_len) { sha_process(ctxt, data, data_len); } SHA256_DIGEST sha256_finish(SHA256_CTX *ctxt) { SHA256_DIGEST result; sha_done(ctxt, result.data); return result; } #endif