#include "envelope.h" #include using namespace std::chrono_literals; CEnvelope::CEnvelopePointAccess::CEnvelopePointAccess(std::vector *pvPoints) { m_pvPoints = pvPoints; } int CEnvelope::CEnvelopePointAccess::NumPoints() const { return m_pvPoints->size(); } const CEnvPoint *CEnvelope::CEnvelopePointAccess::GetPoint(int Index) const { if(Index < 0 || (size_t)Index >= m_pvPoints->size()) return nullptr; return &m_pvPoints->at(Index); } const CEnvPointBezier *CEnvelope::CEnvelopePointAccess::GetBezier(int Index) const { if(Index < 0 || (size_t)Index >= m_pvPoints->size()) return nullptr; return &m_pvPoints->at(Index).m_Bezier; } CEnvelope::CEnvelope(EType Type) : m_PointsAccess(&m_vPoints) { m_Type = Type; m_aName[0] = '\0'; m_Bottom = 0; m_Top = 0; m_Synchronized = false; } CEnvelope::CEnvelope(int NumChannels) : m_PointsAccess(&m_vPoints) { switch(NumChannels) { case 1: m_Type = EType::SOUND; break; case 3: m_Type = EType::POSITION; break; case 4: m_Type = EType::COLOR; break; default: dbg_assert(false, "invalid number of channels for envelope"); } m_aName[0] = '\0'; m_Bottom = 0; m_Top = 0; m_Synchronized = false; } void CEnvelope::Resort() { std::sort(m_vPoints.begin(), m_vPoints.end()); FindTopBottom(0xf); } void CEnvelope::FindTopBottom(int ChannelMask) { m_Top = -1000000000.0f; m_Bottom = 1000000000.0f; CEnvPoint_runtime *pPrevPoint = nullptr; for(auto &Point : m_vPoints) { for(int c = 0; c < GetChannels(); c++) { if(ChannelMask & (1 << c)) { { // value handle const float v = fx2f(Point.m_aValues[c]); m_Top = maximum(m_Top, v); m_Bottom = minimum(m_Bottom, v); } if(Point.m_Curvetype == CURVETYPE_BEZIER) { // out-tangent handle const float v = fx2f(Point.m_aValues[c] + Point.m_Bezier.m_aOutTangentDeltaY[c]); m_Top = maximum(m_Top, v); m_Bottom = minimum(m_Bottom, v); } if(pPrevPoint != nullptr && pPrevPoint->m_Curvetype == CURVETYPE_BEZIER) { // in-tangent handle const float v = fx2f(Point.m_aValues[c] + Point.m_Bezier.m_aInTangentDeltaY[c]); m_Top = maximum(m_Top, v); m_Bottom = minimum(m_Bottom, v); } } } pPrevPoint = &Point; } } int CEnvelope::Eval(float Time, ColorRGBA &Color) { CRenderTools::RenderEvalEnvelope(&m_PointsAccess, GetChannels(), std::chrono::nanoseconds((int64_t)((double)Time * (double)std::chrono::nanoseconds(1s).count())), Color); return GetChannels(); } void CEnvelope::AddPoint(int Time, int v0, int v1, int v2, int v3) { CEnvPoint_runtime p; p.m_Time = Time; p.m_aValues[0] = v0; p.m_aValues[1] = v1; p.m_aValues[2] = v2; p.m_aValues[3] = v3; p.m_Curvetype = CURVETYPE_LINEAR; for(int c = 0; c < CEnvPoint::MAX_CHANNELS; c++) { p.m_Bezier.m_aInTangentDeltaX[c] = 0; p.m_Bezier.m_aInTangentDeltaY[c] = 0; p.m_Bezier.m_aOutTangentDeltaX[c] = 0; p.m_Bezier.m_aOutTangentDeltaY[c] = 0; } m_vPoints.push_back(p); Resort(); } float CEnvelope::EndTime() const { if(m_vPoints.empty()) return 0.0f; return m_vPoints.back().m_Time / 1000.0f; } int CEnvelope::GetChannels() const { switch(m_Type) { case EType::POSITION: return 3; case EType::COLOR: return 4; case EType::SOUND: return 1; default: dbg_assert(false, "unknown envelope type"); dbg_break(); } }