mirror of
https://github.com/ddnet/ddnet.git
synced 2024-11-10 01:58:19 +00:00
Minor refactoring of bezier curve evaluation
- Remove `ValidateFCurve` function because it's small and only used once. - Remove unnecessary checks in `SolveBezier`, as all of these conditions are already checked before the function is called. - Remove unnecessary double negation of `InTang` to improve readability. - Use `double` literals for `double` comparisons instead of `float` literals. - Fix comments.
This commit is contained in:
parent
47a8156ca8
commit
ecfc18d129
|
@ -124,13 +124,6 @@ const CEnvPointBezier *CMapBasedEnvelopePointAccess::GetBezier(int Index) const
|
||||||
return nullptr;
|
return nullptr;
|
||||||
}
|
}
|
||||||
|
|
||||||
static void ValidateFCurve(const vec2 &p0, vec2 &p1, vec2 &p2, const vec2 &p3)
|
|
||||||
{
|
|
||||||
// validate the bezier curve
|
|
||||||
p1.x = clamp(p1.x, p0.x, p3.x);
|
|
||||||
p2.x = clamp(p2.x, p0.x, p3.x);
|
|
||||||
}
|
|
||||||
|
|
||||||
static double CubicRoot(double x)
|
static double CubicRoot(double x)
|
||||||
{
|
{
|
||||||
if(x == 0.0)
|
if(x == 0.0)
|
||||||
|
@ -143,11 +136,6 @@ static double CubicRoot(double x)
|
||||||
|
|
||||||
static float SolveBezier(float x, float p0, float p1, float p2, float p3)
|
static float SolveBezier(float x, float p0, float p1, float p2, float p3)
|
||||||
{
|
{
|
||||||
// check for valid f-curve
|
|
||||||
// we only take care of monotonic bezier curves, so there has to be exactly 1 real solution
|
|
||||||
if(!(p0 <= x && x <= p3) || !(p0 <= p1 && p1 <= p3) || !(p0 <= p2 && p2 <= p3))
|
|
||||||
return 0.0f;
|
|
||||||
|
|
||||||
const double x3 = -p0 + 3.0 * p1 - 3.0 * p2 + p3;
|
const double x3 = -p0 + 3.0 * p1 - 3.0 * p2 + p3;
|
||||||
const double x2 = 3.0 * p0 - 6.0 * p1 + 3.0 * p2;
|
const double x2 = 3.0 * p0 - 6.0 * p1 + 3.0 * p2;
|
||||||
const double x1 = -3.0 * p0 + 3.0 * p1;
|
const double x1 = -3.0 * p0 + 3.0 * p1;
|
||||||
|
@ -179,7 +167,7 @@ static float SolveBezier(float x, float p0, float p1, float p2, float p3)
|
||||||
|
|
||||||
const double t = (-b + SqrtD) / 2.0;
|
const double t = (-b + SqrtD) / 2.0;
|
||||||
|
|
||||||
if(0.0 <= t && t <= 1.0001f)
|
if(0.0 <= t && t <= 1.0001)
|
||||||
return t;
|
return t;
|
||||||
return (-b - SqrtD) / 2.0;
|
return (-b - SqrtD) / 2.0;
|
||||||
}
|
}
|
||||||
|
@ -213,24 +201,24 @@ static float SolveBezier(float x, float p0, float p1, float p2, float p3)
|
||||||
const double s = CubicRoot(-q);
|
const double s = CubicRoot(-q);
|
||||||
const double t = 2.0 * s - sub;
|
const double t = 2.0 * s - sub;
|
||||||
|
|
||||||
if(0.0 <= t && t <= 1.0001f)
|
if(0.0 <= t && t <= 1.0001)
|
||||||
return t;
|
return t;
|
||||||
return (-s - sub);
|
return (-s - sub);
|
||||||
}
|
}
|
||||||
else
|
else
|
||||||
{
|
{
|
||||||
// Casus irreductibilis ... ,_,
|
// Casus irreducibilis ... ,_,
|
||||||
const double phi = std::acos(-q / std::sqrt(-(p * p * p))) / 3.0;
|
const double phi = std::acos(-q / std::sqrt(-(p * p * p))) / 3.0;
|
||||||
const double s = 2.0 * std::sqrt(-p);
|
const double s = 2.0 * std::sqrt(-p);
|
||||||
|
|
||||||
const double t1 = s * std::cos(phi) - sub;
|
const double t1 = s * std::cos(phi) - sub;
|
||||||
|
|
||||||
if(0.0 <= t1 && t1 <= 1.0001f)
|
if(0.0 <= t1 && t1 <= 1.0001)
|
||||||
return t1;
|
return t1;
|
||||||
|
|
||||||
const double t2 = -s * std::cos(phi + pi / 3.0) - sub;
|
const double t2 = -s * std::cos(phi + pi / 3.0) - sub;
|
||||||
|
|
||||||
if(0.0 <= t2 && t2 <= 1.0001f)
|
if(0.0 <= t2 && t2 <= 1.0001)
|
||||||
return t2;
|
return t2;
|
||||||
return -s * std::cos(phi - pi / 3.0) - sub;
|
return -s * std::cos(phi - pi / 3.0) - sub;
|
||||||
}
|
}
|
||||||
|
@ -304,12 +292,14 @@ void CRenderTools::RenderEvalEnvelope(const IEnvelopePointAccess *pPoints, std::
|
||||||
const vec2 p3 = vec2(pNextPoint->m_Time, fx2f(pNextPoint->m_aValues[c]));
|
const vec2 p3 = vec2(pNextPoint->m_Time, fx2f(pNextPoint->m_aValues[c]));
|
||||||
|
|
||||||
const vec2 OutTang = vec2(pCurrentPointBezier->m_aOutTangentDeltaX[c], fx2f(pCurrentPointBezier->m_aOutTangentDeltaY[c]));
|
const vec2 OutTang = vec2(pCurrentPointBezier->m_aOutTangentDeltaX[c], fx2f(pCurrentPointBezier->m_aOutTangentDeltaY[c]));
|
||||||
const vec2 InTang = -vec2(pNextPointBezier->m_aInTangentDeltaX[c], fx2f(pNextPointBezier->m_aInTangentDeltaY[c]));
|
const vec2 InTang = vec2(pNextPointBezier->m_aInTangentDeltaX[c], fx2f(pNextPointBezier->m_aInTangentDeltaY[c]));
|
||||||
|
|
||||||
vec2 p1 = p0 + OutTang;
|
vec2 p1 = p0 + OutTang;
|
||||||
vec2 p2 = p3 - InTang;
|
vec2 p2 = p3 + InTang;
|
||||||
|
|
||||||
// validate bezier curve
|
// validate bezier curve
|
||||||
ValidateFCurve(p0, p1, p2, p3);
|
p1.x = clamp(p1.x, p0.x, p3.x);
|
||||||
|
p2.x = clamp(p2.x, p0.x, p3.x);
|
||||||
|
|
||||||
// solve x(a) = time for a
|
// solve x(a) = time for a
|
||||||
a = clamp(SolveBezier(TimeMillis, p0.x, p1.x, p2.x, p3.x), 0.0f, 1.0f);
|
a = clamp(SolveBezier(TimeMillis, p0.x, p1.x, p2.x, p3.x), 0.0f, 1.0f);
|
||||||
|
|
Loading…
Reference in a new issue